Sunday, November 24, 2024
No menu items!
HomeNatureEffective realization of abatement measures can reduce HFC-23 emissions

Effective realization of abatement measures can reduce HFC-23 emissions

  • Liang, Q. et al. in Scientific Assessment of Ozone Depletion: 2022. GAW Report No. 278, Ch. 2 (World Meteorological Organization, 2022).

  • Stanley, K. M. et al. Increase in global emissions of HFC-23 despite near-total expected reductions. Nat. Commun. 11, 397 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miller, B. R. et al. HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures. Atmos. Chem. Phys. 10, 7875–7890 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • Park, H. et al. A rise in HFC-23 emissions from eastern Asia since 2015. Atmos. Chem. Phys. 23, 9401–9411 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • UNEP. Key Aspects Related to HFC-23 By-product Control Technologies (Decision 83/67(d)). Report No. UNEP/OzL.Pro/ExCom/89/13 (United Nations Environment Programme, 2022).

  • UNEP. Report of Part II of the Eighty-Ninth Meeting of the Executive Committee. Report No. UNEP/OzL.Pro/ExCom/89/16 (United Nations Environment Programme, 2022).

  • International Energy Agency. Aviation. IEA https://www.iea.org/reports/aviation (2022).

  • UNEP. Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer. United Nations Treaty Collection https://treaties.un.org/Pages/ViewDetails.aspx?src=IND&mtdsg_no=XXVII-2-f&chapter=27&clang=_en (2016).

  • Myhre, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 8 (Cambridge Univ. Press, 2013).

  • Oram, D. E., Sturges, W. T., Penkett, S. A., McCulloch, A. & Fraser, P. J. Growth of fluoroform (CHF3, HFC-23) in the background atmosphere. Geophys. Res. Lett. 25, 35–38 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Miller, B. R. & Kuijpers, L. J. M. Projecting future HFC-23 emissions. Atmos. Chem. Phys. 11, 13259–13267 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Simmonds, P. G. et al. Recent increases in the atmospheric growth rate and emissions of HFC-23 (CHF3) and the link to HCFC-22 (CHClF2) production. Atmos. Chem. Phys. 18, 4153–4169 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Rodriguez, M. A., van Dril, T. & Gamboa Palacios, S. Decarbonisation Options for the Dordrecht Chemical Cluster, MIDDEN: Manufacturing Industry Decarbonisation Data Exchange Network (PBL Netherlands Environmental Assessment Agency, 2021).

  • TEAP. Volume 6: Response to Decision XXXIV/7: Strengthening Institutional Processes with Respect to Information on HFC-23 By-Product Emissions, Report of the Technology and Economic Assessment Panel, Vol. 6 (United Nations Environment Programme, 2023).

  • Ebnesajjad, S. Fluoroplastics, Vol. 2, Melt Processible Fluoropolymers, The Definitive User’s Guide and Data Book 2nd edn, Ch. 6 (Elsevier, 2015).

  • Sung, D. J., Moon, D. J., Moon, S., Kim, J. & Hong, S. I. Catalytic pyrolysis of chlorodifluoromethane over metal fluoride catalysts to produce tetrafluoroethylene. Appl. Catal. A Gen. 292, 130–137 (2005).

    CAS 

    Google Scholar
     

  • UNEP. Medical and Technical Options Committee (MCTOC) 2022 Assessment Report (United Nations Environment Programme, 2022).

  • TEAP. Volume 6: Assessment of the Funding Requirement for the Replenishment of the Multilateral Fund for the Period 2021–2023, Report of the Technology and Economic Assessment Panel (United Nations Environment Programme, 2021).

  • Pérez-Peña, M. P., Fisher, J. A., Hansen, C. & Kable, S. H. Assessing the atmospheric fate of trifluoroacetaldehyde (CF3CHO) and its potential as a new source of fluoroform (HFC-23) using the AtChem2 box model. Environ. Sci. Atmos. 3, 1767–1777 (2023).


    Google Scholar
     

  • McGillen, M. R. et al. Ozonolysis can produce long-lived greenhouse gases from commercial refrigerants. Proc. Natl Acad. Sci. USA 120, e2312714120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCulloch, A. & Lindley, A. A. Global emissions of HFC-23 estimated to year 2015. Atmos. Environ. 41, 1560–1566 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • US EPA. Global Mitigation of Non-CO2 Greenhouse Gases: 2010-2030 (United States Environmental Protection Agency, Office of Atmospheric Programs, 2013).

  • UNEP. Key Aspects Related to HFC-23 By-Product Control Technologies. Report No. UNEP/OzL.Pro/ExCom/78/9, Vol. 1 (United Nations Environment Programme, 2017).

  • UNEP. Corrigendum Key Aspects Related to HFC-23 By-Product Control Technologies. Report No. UNEP/OzL.Pro/ExCom/78/9/Corr.1 (United Nations Environment Programme, 2017).

  • Say, D. et al. Emissions of halocarbons from India inferred through atmospheric measurements. Atmos. Chem. Phys. 19, 9865–9885 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • UNEP. Key Aspects Related to HFC-23 By-product Control Technologies (Decision 78/5). Report No. UNEP/OzL.Pro/ExCom/79/48 (United Nations Environment Programme, 2017).

  • UNEP. Cost-Effective Options for Controlling HFC-23 By-Product Emissions (Decision 81/68(e)). Report No. UNEP/OzL.Pro/ExCom/82/68 (United Nations Environment Programme, 2018).

  • UNEP. Corrigendum: Cost-effective Options for Controlling HFC-23 By-Product Emissions (Decision 81/68(e)). Report No. UNEP/OzL.Pro/ExCom/82/68/Corr.1 (United Nations Environment Programme, 2018).

  • UNEP. Report of the Sub-group on the Production Sector. Report No. UNEP/OzL.Pro/ExCom/84/74* (United Nations Environment Programme, 2019).

  • MEFCC. Ministry of Environment, Forest and Climate Change. Order No. F. No. 10/29/2014-OC (Ozone Cell, 2016).

  • UNEP. Key Aspects Related to HFC-23 By-product Control Technologies: Mexico (Decision 86/96). Report No. UNEP/OzL.Pro/ExCom/87/54 (United Nations Environment Programme, 2021).

  • UNEP. Report of the Eighty-Seventh Meeting of the Executive Committee. Report No. UNEP/OzL.Pro/ExCom/87/58 (United Nations Environment Programme, 2021).

  • Yi, L. et al. In situ observations of halogenated gases at the Shangdianzi background station and emission estimates for northern China. Environ. Sci. Technol. 57, 7217–7229 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Miller, B. R. et al. Medusa: a sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds. Anal. Chem. 80, 1536–1545 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Arnold, T. et al. Automated measurement of nitrogen trifluoride in ambient air. Anal. Chem. 84, 4798–4804 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Dewi, R. G. et al. in 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 3, Vol. 3 (Intergovernmental Panel of Climate Change, 2019).

  • Daniel, J. S. et al. in Scientific Assessment of Ozone Depletion 2022. GAW Report No. 278, Ch. 7 (World Meteorological Organization, 2022).

  • Mühle, J. et al. Global emissions of perfluorocyclobutane (PFC-318, c-C4F8) resulting from the use of hydrochlorofluorocarbon-22 (HCFC-22) feedstock to produce polytetrafluoroethylene (PTFE) and related fluorochemicals. Atmos. Chem. Phys. 22, 3371–3378 (2022).

    ADS 

    Google Scholar
     

  • Harnisch, J. et al. 2006 IPCC Guidelines for National Greenhouse Gas Inventories Ch. 3, Vol. 3 (Intergovernmental Panel of Climate Change, 2006).

  • Murphy, P. M., Schleinitz, H. M. & Van Bramer, D. J. Synthesis of tetrafluoroethylene. US patent 5672784 (1997).

  • Mühle, J. et al. Perfluorocyclobutane (PFC-318, c-C4F8) in the global atmosphere. Atmos. Chem. Phys. 19, 10335–10359 (2019).

    ADS 

    Google Scholar
     

  • Burkholder, J. B. & Hodnebrog, Ø. in Scientific Assessment of Ozone Depletion 2022. GAW Report No. 278 (World Meteorological Organization, 2022).

  • Keller, C. A. et al. Evidence for under-reported Western European emissions of the potent greenhouse gas HFC-23. Geophys. Res. Lett. 38, L15808 (2011).

    ADS 

    Google Scholar
     

  • US EPA. Global Non-CO2 Greenhouse Gas Emission Projections & Mitigation Potential: 2015–2050 (United States Environmental Protection Agency, 2019).

  • UNEP. Decisions adopted by the Thirty-Fourth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer. Report No. UNEP/OzL.Pro.34/9/Add.1/Rev.1 (United Nations Environment Programme, 2022).

  • UNEP. Report of the Thirty-Fourth Meeting of the Parties to the Montreal Protocol on Substances that Deplete the Ozone Layer Introduction. Report No. UNEP/OzL.Pro.34/9 (United Nations Environment Programme, 2022).

  • Laube, J. C. et al. in Scientific Assessment of Ozone Depletion 2022. GAW Report No. 278, Ch. 1 (World Meteorological Organization, 2022).

  • Prinn, R. G. et al. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst. Sci. Data 10, 985–1018 (2018).

    ADS 

    Google Scholar
     

  • Vollmer, M. K., Reimann, S., Hill, M. & Brunner, D. First observations of the fourth generation synthetic halocarbons HFC-1234yf, HFC-1234ze(E), and HCFC-1233zd(E) in the atmosphere. Environ. Sci. Technol. 49, 2703–2708 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jones, A., Thomson, D., Hort, M. & Devenish, B. The U.K. Met Office’s Next-Generation Atmospheric Dispersion Model, NAME III. In Air Pollution Modeling and Its Application XVII (eds Borrego, C. & Norman, A. L.) 580–589 (Springer, 2007).

  • RELATED ARTICLES

    Most Popular

    Recent Comments