Thursday, February 13, 2025
No menu items!
HomeNatureEarliest short-tailed bird from the Late Jurassic of China

Earliest short-tailed bird from the Late Jurassic of China

  • Rauhut, O. W. M. & Foth, C. in The Evolution of Feathers: From Their Origin to the Present (eds Foth, C. & Rauhut, O. W. M.) 27–45 (Springer, 2020).

  • Lloyd, G. T., Bapst, D. W., Friedman, M. & Davis, K. E. Probabilistic divergence time estimation without branch lengths: dating the origins of dinosaurs, avian flight and crown birds. Biol. Lett. 12, 20160609 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Foth, C., Tischlinger, H. & Rauhut, O. W. M. New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511, 79–82 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Hu, D. et al. A bony-crested Jurassic dinosaur with evidence of iridescent plumage highlights complexity in early paravian evolution. Nat. Commun. 9, 217 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pei, R., Li, Q., Meng, Q., Norell, M. A. & Gao, K. New specimens of Anchiornis huxleyi (Theropoda: Paraves) from the Late Jurassic of northeastern China. Bull. Am. Mus. Nat. Hist. 411, 1–67 (2017).

    Article 

    Google Scholar
     

  • Rauhut, O. W., Foth, C. & Tischlinger, H. The oldest Archaeopteryx (Theropoda: Avialiae): a new specimen from the Kimmeridgian/Tithonian boundary of Schamhaupten, Bavaria. PeerJ 6, e4191 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Godefroit, P. et al. A Jurassic avialan dinosaur from China resolves the early phylogenetic history of birds. Nature 498, 359–362 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chiappe, L. M. & Meng, Q. Birds of Stone: Chinese Avian Fossils from the Age of Dinosaurs (Johns Hopkins Univ. Press, 2016).

  • Gatesy, S. M. & Middleton, K. M. Bipedalism, flight, and the evolution of theropod locomotor diversity. J. Vertebr. Paleontol. 17, 308–329 (1997).

    Article 

    Google Scholar
     

  • Rashid, D. et al. From dinosaurs to birds: a tail of evolution. EvoDevo 5, 25 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Xu, L. et al. A new avialan theropod from an emerging Jurassic terrestrial fauna. Nature 621, 336–343 (2023).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brusatte, S. L., Lloyd, G. T., Wang, S. C. & Norell, M. A. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition. Curr. Biol. 24, 2386–2392 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • O’Connor, J. K. et al. An enantiornithine with a fan-shaped tail, and the evolution of the rectricial complex in early birds. Curr. Biol. 26, 114–119 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaeosaurid systematics and paravian phylogeny. Bull. Am. Mus. Nat. Hist. 371, 1–206 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Pittman, M. et al. The fossil record of Mesozoic and Paleocene pennaraptorans. Bull. Am. Mus. Nat. Hist. 440, 37–96 (2020).

    MATH 

    Google Scholar
     

  • Mayr, G., Pohl, B., Hartman, S. & Peters, D. S. The tenth skeletal specimen of Archaeopteryx. Zool. J. Linn. Soc. 149, 97–116 (2007).

    Article 
    MATH 

    Google Scholar
     

  • Wellnhofer, P. A short history of research on Archaeopteryx and its relationship with dinosaurs. Geol. Soc. Lond. Spec. 343, 237–250 (2010).

    Article 

    Google Scholar
     

  • Wang, M., O’Connor, J. K., Xu, X. & Zhou, Z. A new Jurassic scansoriopterygid and the loss of membranous wings in theropod dinosaurs. Nature 569, 256–259 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, F., Zhou, Z., Xu, X., Wang, X. & Sullivan, C. A bizarre Jurassic maniraptoran from China with elongate ribbon-like feathers. Nature 455, 1105–1108 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Turner, A. H., Montanari, S. & Norell, M. A. A new dromaeosaurid from the Late Cretaceous Khulsan locality of Mongolia. Am. Mus. Novit. 2020, 1–48 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Agnolin, F. & Novas, F. E. Avian Ancestors: A Review of the Phylogenetic Relationships of the Theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae (Springer, 2013).

  • O’Connor, J. K. & Sullivan, C. Reinterpretation of the Early Cretaceous maniraptoran (Dinosauria: Theropoda) Zhongornis haoae as a scansoriopterygid-like non-avian, and morphological resemblances between scansoriopterygids and basal oviraptorosaurs. Vertebr. Palasiat. 52, 3–30 (2014).


    Google Scholar
     

  • Zhang, C. Selecting and averaging relaxed clock models in Bayesian tip dating of Mesozoic birds. Paleobiol. 48, 340–352 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Bever, G. S., Gauthier, J. A. & Wagner, G. P. Finding the frame shift: digit loss, developmental variability, and the origin of the avian hand. Evol. Dev. 13, 269–279 (2011).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Field, D. J., Lynner, C., Brown, C. & Darroch, S. A. F. Skeletal correlates for body mass estimation in modern and fossil flying birds. PLoS ONE 8, e82000 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiappe, L. M., Ji, S. A., Ji, Q. & Norell, M. A. Anatomy and systematics of the Confuciusornithidae (Theropoda: Aves) from the Late Mesozoic of northeastern China. Bull. Am. Mus. Nat. Hist. 242, 1–89 (1999).


    Google Scholar
     

  • Li, Z., Wang, M., Stidham, T. A. & Zhou, Z. Decoupling the skull and skeleton in a Cretaceous bird with unique appendicular morphologies. Nat. Ecol. Evol. 7, 20–31 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Clarke, J. A., Zhou, Z. & Zhang, F. Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui. J. Anat. 208, 287–308 (2006).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M., O’Connor, J. K., Pan, Y. & Zhou, Z. A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle. Nat. Commun. 8, 14141 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M., O’Connor, J. K. & Zhou, Z. A taxonomical revision of the Confuciusornithiformes (Aves: Pygostylia). Vertebr. Palasiat. 57, 1–37 (2019).


    Google Scholar
     

  • Zhou, Z. & Zhang, F. Anatomy of the primitive bird Sapeornis chaoyangensis from the Early Cretaceous of Liaoning, China. Can. J. Earth Sci. 40, 731–747 (2003).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Livezey, B. C. & Zusi, R. L. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linn. Soc. 149, 1–95 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, M., Stidham, T. A. & Zhou, Z. A new clade of basal Early Cretaceous pygostylian birds and developmental plasticity of the avian shoulder girdle. Proc. Natl Acad. Sci. USA 115, 10708–10713 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418, 405–409 (2002).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, S. et al. Digital restoration of the pectoral girdles of two Early Cretaceous birds and implications for early-flight evolution. eLife 11, e76086 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ostrom, J. H. Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana. Bull. Peabody Mus. Nat. Hist. 30, 1–165 (1969).

    MATH 

    Google Scholar
     

  • Zhang, F. & Zhou, Z. A primitive enantiornithine bird and the origin of feathers. Science 290, 1955–1959 (2000).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • O’Connor, J. K. A Systematic Review of Enantiornithes (Aves: Ornithothoraces) (Univ. Southern California, 2009).

  • Chiappe, L. M. & Walker, C. A. in Mesozoic Birds: Above the Heads of Dinosaurs (eds Chiappe L. M. & Witmer L. M.) 240–267 (Univ. California Press, 2002).

  • Nesbitt, S. J., Turner, A. H., Spaulding, M., Conrad, J. L. & Norell, M. A. The theropod furcula. J. Morphol. 270, 856–879 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, M. Taxonomical Revision, Ontogenetic, Ecological and Phylogenetic Analyses of Enantiornithes (Aves: Ornithothoraces) (Univ. Chinese Academy of Sciences, 2014).

  • Xu, X. & Mackem, S. Tracing the evolution of avian wing digits. Curr. Biol. 23, R538–R544 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rauhut, O. W. M., Tischlinger, H. & Foth, C. A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 8, e43789 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X., Han, F. & Zhao, Q. Homologies and homeotic transformation of the theropod ‘semilunate’ carpal. Sci. Rep. 4, 6042 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chiappe, L. M., Ji, S. & Ji, Q. Juvenile birds from the Early Cretaceous of China: implications for enantiornithine ontogeny. Am. Mus. Novit. 3594, 1–46 (2007).

    Article 
    MATH 

    Google Scholar
     

  • Hinchliffe, J. in The Beginnings of Birds (eds Hecht, M. K. et al.) 141–147 (Freunde des Jura-Museum, 1985).

  • Zhang, F., Zhou, Z., Xu, X. & Wang, X. A juvenile coelurosaurian theropod from China indicates arboreal habits. Naturwissenschaften 89, 394–398 (2002).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, M., Wang, X., Wang, Y. & Zhou, Z. A new basal bird from China with implications for morphological diversity in early birds. Sci. Rep. 6, 19700 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nebreda, S. M. et al. Disparity and macroevolutionary transformation of the maniraptoran manus. Bull. Am. Mus. Nat. Hist. 440, 183–203 (2020).


    Google Scholar
     

  • Rhodes, M. M., Henderson, D. M. & Currie, P. J. Maniraptoran pelvic musculature highlights evolutionary patterns in theropod locomotion on the line to birds. PeerJ 9, e10855 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hutchinson, J. R. The evolution of pelvic osteology and soft tissues on the line to extant birds (Neornithes). Zool. J. Linn. Soc. 131, 123–168 (2001).

    Article 
    MATH 

    Google Scholar
     

  • Xu, X., Norell, M. A., Wang, X., Makovicky, P. J. & Wu, X. A basal troodontid from the Early Cretaceous of China. Nature 415, 780–784 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, M. et al. An Early Cretaceous enantiornithine bird with a pintail. Curr. Biol. 31, 4845–4852 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Persons, W. S., Currie, P. J. & Norell, M. A. Oviraptorosaur tail forms and functions. Acta Palaeontol. Polonica 59, 553–567 (2013).

    MATH 

    Google Scholar
     

  • Xu, X., Cheng, Y., Wang, X. & Chang, C. Pygostyle-like structure from Beipiaosaurus (Theropoda, Therizinosauroidea) from the Lower Cretaceous Yixian Formation of Liaoning, China. Acta Geol. Sin. 77, 294–298 (2003).

    Article 

    Google Scholar
     

  • Rashid, D. J. & Chapman, S. C. The long and the short of tails. Dev. Dyn. 250, 1229–1235 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lloyd, G. T. Estimating morphological diversity and tempo with discrete character-taxon matrices: implementation, challenges, progress, and future directions. Biol. J. Linn. Soc. 118, 131–151 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Heers, A. M., Varghese, S. L., Hatier, L. K. & Cabrera, J. J. Multiple functional solutions during flightless to flight-capable transitions. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.573411 (2021).

  • Mayr, G. Metaves, Mirandornithes, Strisores and other novelties—a critical review of the higher-level phylogeny of neornithine birds. J. Zool. Syst. Evol. Res. 49, 58–76 (2011).

    Article 
    MATH 

    Google Scholar
     

  • Goloboff, P. A. & Catalano, S. A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Bapst, D. W. paleotree: an R package for paleontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3, 803–807 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J. Mol. Evol. 39, 306–314 (1994).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Maddison, W. & Maddison, D. Mesquite: A modular system for evolutionary analysis. Version 3.61 https://www.mesquiteproject.org (2019).

  • Rohlf, F. TpsDig2. Version 2.1 https://tpsdig2.software.informer.com (2009).

  • Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric Morphometrics for Biologists: A Primer (Academic Press, 2012).

  • Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Oksanen, J. et al. The vegan package. Community Ecol. Packag. 10, 631–637 (2007).

    MATH 

    Google Scholar
     

  • Wilson, S. On comparing fossil specimens with population samples. J. Hum. Evol. 10, 207–214 (1981).

    Article 
    MATH 

    Google Scholar
     

  • Stefan, S. Morpho: Calculations and visualisations related to geometric morphometrics. Version 2.12 https://CRAN.Rproject.org/package=Morpho (2023).

  • Palci, A., Hutchinson, M. N., Caldwell, M. W. & Lee, M. S. The morphology of the inner ear of squamate reptiles and its bearing on the origin of snakes. R. Soc. Open Sci. 4, 170685 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, R. et al. Raw data, codes that are used to reproduce the results in “Earliest short-tailed bird from the Late Jurassic of China”. Figshare https://doi.org/10.6084/m9.figshare.25918291 (2024).

  • Campbell, K. E. The manus of archaeopterygians: implication for avian ancestry. Oryctos 7, 13–26 (2008).

  • RELATED ARTICLES

    Most Popular

    Recent Comments