Marchetti, L. et al. Footprints of the earliest reptiles: Notalacerta missouriensis – ichnotaxonomy, potential trackmakers, biostratigraphy, palaeobiogeography and palaeoecology. Ann. Soc. Geol. Pol. 90, 271–290 (2020).
Marchetti, L. et al. Tracking the origin and early evolution of reptiles. Front. Ecol. Evol. 9, 696511 (2021).
Carroll, R. L. The earliest reptiles. Zool. J. Linn. Soc. 45, 61–83 (1964).
Ford, D. P. & Benson, R. B. J. The phylogeny of early amniotes and the affinities of Parareptilia and Varanopidae. Nat. Ecol. Evol. 4, 57–65 (2020).
Milner, A. R. & Sequeira, S. E. K. The temnospondyl amphibians from the Viséan of East Kirkton, West Lothian, Scotland. Earth Environ. Sci. Trans. R. Soc. Edinb. 84, 331–361 (1993).
Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).
Lucas, S. G. et al. in The Carboniferous Timescale Special Publications 512 (eds Lucas, S. G. et al.) 965–1001 (Geological Society, 2021).
Young, G. C. Devonian formations, vertebrate faunas, and age control on the far south coast of New South Wales and adjacent Victoria. Aust. J. Earth Sci. 54, 991–1008 (2007).
Marsden, M. A. H. in Geology of Victoria (eds Douglas, J. G. & Ferguson, J. A.) 147–194 (Victorian Division of the Geological Society of Australia Inc., 1988).
MacDougall, M. J. et al. A new recumbirostran ‘microsaur’ from the Lower Permian Bromacker locality, Thuringia, Germany, and its fossorial adaptations. Sci. Rep. 14, 4200 (2024).
Coates, M. I. & Clack, J. E. Romer’s gap: tetrapod origins and terrestriality. Bull. Mus. Natl Hist. Nat. 17, 373–388 (1995).
Clark, I. D. The Port Phillip Journals of George Augustus Robinson: 8 March-7 April 1842 and 18 March-29 April 1843 (Monash University, Department of Geography, 1988).
Garvey, J. M. & Hasiotis, S. T. An ichnofossil assemblage from the Lower Carboniferous Snowy Plains Formation, Mansfield Basin, Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 258, 257–276 (2008).
Garvey, J. M. & Turner, S. Vertebrate microremains from the presumed earliest Carboniferous of the Mansfield Basin, Victoria. Alcheringa 30, 43–62 (2006).
Long, J. A. in Devonian and Carboniferous Fish Studies Memoir 7 (ed. Jell, P. A.) 1–64 (Association of Australasian Palaeontologists, 1988).
Long, J. A. A new rhizodontiform fish from the Early Carboniferous of Victoria, Australia, with remarks on the phylogenetic position of the group. J. Vertebr. Paleontol. 9, 1–17 (1989).
Long, J. A. & Campbell, K. S. W. A new lungfish from the Lower Carboniferous of Victoria, Australia. Proc. R. Soc. Vic. 97, 87–93 (1985).
Fergusson, C. L. & Colquhoun, G. P. Devonian–Carboniferous regional deformation in the northeastern Lachlan Orogen, southeastern Australia. Aust. J. Earth Sci. 68, 1092–1110 (2021).
Foster, D. A. & Gray, D. R. Evolution and structure of the Lachlan Fold Belt (Orogen) of Eastern Australia. Annu. Rev. Earth Planet. Sci. 28, 47–80 (2000).
Berman, D. S., Henrici, A. C., Sumida, S. S. & Martens, T. Redescription of Seymouria sanjuanensis (Seymouriamorpha) from the Lower Permian of Germany based on complete, mature specimens with a discussion of paleoecology of the Bromacker locality assemblage. J. Vertebr. Paleontol. 20, 253–268 (2000).
Kennedy, N. K. Redescription of the postcranial skeleton of Limnoscelis paludis Williston (Diadectomorpha: Limnoscelidae) from the Upper Pennsylvanian of El Cobre Canyon, northern New Mexico. Bull. N. M. Mus. Nat. Hist. Sci. 49, 211–220 (2010).
Marchetti, L., Mujal, E. & Bernardi, M. An unusual Amphisauropus trackway and its implication for understanding seymouriamorph locomotion. Lethaia 50, 162–174 (2016).
Voigt, S., Berman, D. S. & Henrici, A. C. First well-established track-trackmaker association of paleozoic tetrapods based on Ichniotherium trackways and diadectid skeletons from the Lower Permian of Germany. J. Vertebr. Paleontol. 27, 553–570 (2007).
Voigt, S. & Ganzelewski, M. Toward the origin of amniotes: diadectomorph and synapsid footprints from the early Late Carboniferous of Germany. Acta Palaeontol. Pol. 55, 57–72 (2010).
Buchwitz, M., Jansen, M., Renaudie, J., Marchetti, L. & Voigt, S. Evolutionary change in locomotion close to the origin of amniotes inferred from trackway data in an ancestral state reconstruction approach. Front. Ecol. Evol. 9, 674779 (2021).
Maddin, H. C., Eckhart, L., Jaeger, K., Russell, A. P. & Ghannadan, M. The anatomy and development of the claws of Xenopus laevis (Lissamphibi: Anura) reveal alternate pathways of structural evolution in the integument of tetrapods. J. Anat. 214, 607–619 (2009).
Sigurdsen, T. & Bolt, J. R. The Lower Permian amphibamid Doleserpeton (Temnospondyli: Dissorophoidea), the interrelationships of amphibamids, and the origin of modern amphibians. J. Vertebr. Paleontol. 30, 1360–1377 (2010).
Górecka-Nowak, A., Jankowska, A. & Muszer, J. Age revision of Carboniferous rocks in the northern part of the Intra-Sudetic Basin (SW Poland) based on miospore data. Geol. Q. 65, 8 (2021).
Voigt, S., Niedźwiedzki, G., Raczyński, P., Mastalerz, K. & Ptaszyński, T. Early Permian tetrapod ichnofauna from the Intra-Sudetic Basin, SW Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313–314, 173–180 (2012).
Zhu, M., Yu, X. & Ahlberg, P. E. A primitive sarcopterygian fish with an eyestalk. Nature 410, 81–84 (2001).
Lu, J. et al. The earliest known stem tetrapod from the Lower Devonian of China. Nat. Commun. 3, 1160 (2012).
Lu, J. et al. A Devonian predatory fish provides insights into the early evolution of modern sarcopterygians. Sci. Adv. 2, e1600154 (2016).
Niedźwiedzki, G., Szrek, P., Narkiewicz, K., Narkiewicz, M. & Ahlberg, P. E. Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463, 43–48 (2010).
Stössel, I., Williams, E. A. & Higgs, K. T. Ichnology and depositional environment of the Middle Devonian Valentia Island tetrapod trackways, south-west Ireland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 462, 16–40 (2016).
Ahlberg, P. E. Elginerpeton pancheni and the earliest tetrapod clade. Nature 373, 420–425 (1995).
Ahlberg, P. E. Postcranial stem tetrapod remains from the Devonian of Scat Craig, Morayshire, Scotland. Zool. J. Linn. Soc. 122, 99–141 (1998).
Coates, M. I., Ruta, M. & Friedman, M. Ever since Owen: changing perspectives on the early evolution of tetrapods. Annu. Rev. Ecol. Evol. Syst. 39, 571–592 (2008).
Chang, M.-M. & Yu, X.-B. Structure and phylogenetic significance of Diabolepis speratus gen. et sp. nov., a new dipnoan-like form from the Lower Devonian of eastern Yunnan, China. Proc. Linn. Soc. New South Wales 107, 171–184 (1984).
Cloutier, R. et al. Elpistostege and the origin of the vertebrate hand. Nature 579, 549–554 (2020).
Daeschler, E. B., Shubin, N. H. & Jenkins, F. A. Jr. A Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440, 757–763 (2006).
Shubin, N. H. Your Inner Fish (Vintage, 2009).
Stewart, T. A. et al. The axial skeleton of Tiktaalik rosaeae. Proc. Natl Acad. Sci. USA 121, e2316106121 (2024).
Clack, J. A. Gaining Ground: The Origin and Evolution of Tetrapods 2nd edn (Indiana Univ. Press, 2012).
Ahlberg, P. E. Follow the footprints and mind the gaps: a new look at the origin of tetrapods. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 115–137 (2019).
Gess, R. & Ahlberg, P. E. A tetrapod fauna from within the Devonian Antarctic Circle. Science 360, 1120–1124 (2018).
Beznosov, P. A., Clack, J. A., Lukševičs, E., Ruta, M. & Ahlberg, P. E. Morphology of the earliest reconstructable tetrapod Parmastega aelidae. Nature 574, 527–531 (2019).
Ahlberg, P. E. & Clack, J. A. The smallest known Devonian tetrapod shows unexpectedly derived features. R. Soc. Open Sci. 7, 192117 (2020).
Camens, A. B. & Carey, S. P. Contemporaneous trace and body fossils from a late Pleistocene lakebed in Victoria, Australia, allow assessment of bias in the fossil record. PLoS ONE 8, e52957 (2013).
Dupret, V. et al. The Bothriolepis (Placodermi, Antiarcha) material from the Valentia Slate Formation of the Iveragh Peninsula (middle Givetian, Ireland): morphology, evolutionary and systematic considerations, phylogenetic and palaeogeographic implications. PLoS ONE 18, e0280208 (2023).
Dupret, V. et al. Non-tetrapod sarcopterygians from the Valentia Slate Formation (Givetian, Devonian) of the Iveragh Peninsula, south-western Ireland: systematic reappraisal and palaeobiogeographic implications. Span. J. Palaeontol. 38, 37–46 (2023).
Klootwijk, C. Sedimentary basins of eastern Australia: paleomagnetic constraints on geodynamic evolution in a global context. Aust. J. Earth Sci. 56, 273–308 (2009).
Klootwijk, C. Australia’s controversial Middle-Late Palaeozoic pole path and Gondwana–Laurasia interaction. Palaeoworld 19, 174–185 (2010).
Clack, J. A. & Finney, S. M. Pederpes finneyae, an articulated tetrapod from the Tournaisian of Western Scotland. J. Syst. Paleontol. 2, 311–346 (2005).
Anderson, J. A., Smithson, T., Mansky, C. F., Meyer, T. & Clack, J. A diverse tetrapod fauna at the base of ‘Romer’s Gap’. PLoS ONE 10, e0125446 (2015).
Clack, J. A. et al. Phylogenetic and environmental context of a Tournaisian tetrapod fauna. Nat. Ecol. Evol. 1, 0002 (2016).
Lebedev, O. A. & Coates, M. I. The postcranial skeleton of the Devonian tetrapod Tulerpeton curtum Lebedev. Zool. J. Linn. Soc. 114, 307–348 (1995).
Long, A. J. et al. Reptile tracks from the earliest Carboniferous of Australia recalibrate the timeline of tetrapod evolution. figshare https://doi.org/10.6084/m9.figshare.25869367 (2025).