Friday, January 10, 2025
No menu items!
HomeNatureDynamic supramolecular snub cubes | Nature

Dynamic supramolecular snub cubes | Nature

  • Yuan, S. et al. Cryo-EM structure of a herpesvirus capsid at 3.1 Å. Science 360, eaao7283 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Lawson, D. M. et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 349, 541–544 (1991).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, Y., Zhao, W., Chen, C.-H. & Flood, A. H. Chloride capture using a C–H hydrogen-bonding cage. Science 365, 159–161 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Du, C., Li, Z., Zhu, X., Ouyang, G. & Liu, M. Hierarchically self-assembled homochiral helical microtoroids. Nat. Nanotechnol. 17, 1294–1302 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Raguram, A., Sasisekharan, V. & Sasisekharan, R. A chiral pentagonal polyhedral framework for characterizing virus capsid structures. Trends Microbiol. 25, 438–446 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jacques, D. A. et al. HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature 536, 349–353 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Minten, I. J., Hendriks, L. J. A., Nolte, R. J. M. & Cornelissen, J. J. L. M. Controlled encapsulation of multiple proteins in virus capsids. J. Am. Chem. Soc. 131, 17771–17773 (2009).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Yamashita, M. & Engelman, A. N. Capsid-dependent host factors in HIV-1 infection. Trends Microbiol. 25, 741–755 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • MacGillivray, L. R. & Atwood, J. L. A chiral spherical molecular assembly held together by 60 hydrogen bonds. Nature 389, 469–472 (1997).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Olenyuk, B., Whiteford, J. A., Fechtenkötter, A. & Stang, P. J. Self-assembly of nanoscale cuboctahedra by coordination chemistry. Nature 398, 796–799 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sun, Q.-F. et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 328, 1144–1147 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, H. et al. Hierarchical self-assembly of nanowires on the surface by metallo-supramolecular truncated cuboctahedra. J. Am. Chem. Soc. 143, 5826–5835 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bierschenk, S. M. et al. Impact of host flexibility on selectivity in a supramolecular host-catalyzed enantioselective aza-Darzens reaction. J. Am. Chem. Soc. 144, 11425–11433 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wu, K. et al. Systematic construction of progressively larger capsules from a fivefold linking pyrrole-based subcomponent. Nat. Synth. 2, 789–797 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Gu, Y. et al. Photoswitching topology in polymer networks with metal–organic cages as crosslinks. Nature 560, 65–69 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, D., Ronson, T. K., Zou, Y.-Q. & Nitschke, J. R. Metal–organic cages for molecular separations. Nat. Rev. Chem. 5, 168–182 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y., Hu, C., Comotti, A. & Ward, M. D. Supramolecular Archimedean cages assembled with 72 hydrogen bonds. Science 333, 436–440 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujita, D. et al. Self-assembly of tetravalent Goldberg polyhedra from 144 small components. Nature 540, 563–566 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Beaudoin, D., Rominger, F. & Mastalerz, M. Chirality-assisted synthesis of a very large octameric hydrogen-bonded capsule. Angew. Chem. Int. Ed. 55, 15599–15603 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Chen, Y.-S. et al. Chemical mimicry of viral capsid self-assembly via corannulene-based pentatopic tectons. Nat. Commun. 10, 3443 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wu, T. et al. Supramolecular triangular orthobicupola: self-assembly of a giant Johnson solid J27. Chem 7, 2429–2441 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Huang, Y.-H. et al. Dynamic metallosupramolecular cages containing 12 adaptable pockets for high-order guest binding beyond biomimicry. J. Am. Chem. Soc. 145, 23361–23371 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benchimol, E., Tessarolo, J. & Clever, G. H. Photoswitchable coordination cages. Nat. Chem. 16, 13–21 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kang, J., Santamaría, J., Hilmersson, G. & Rebek, J. Jr. Self-assembled molecular capsule catalyzes a Diels–Alder reaction. J. Am. Chem. Soc. 120, 7389–7390 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Fujita, D. et al. Protein stabilization and refolding in a gigantic self-assembled cage. Chem 7, 2672–2683 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Irie, M. & Mohri, M. Thermally irreversible photochromic systems. Reversible photocyclization of diarylethene derivatives. J. Org. Chem. 53, 803–808 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, Z. et al. Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches. Nat. Photon. 16, 226–234 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Yamaguchi, T., Uchida, K. & Irie, M. Asymmetric photocyclization of diarylethene derivatives. J. Am. Chem. Soc. 119, 6066–6071 (1997).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • de Jong, J. J. D., Lucas, L. N., Kellogg, R. M., van Esch, J. H. & Feringa, B. L. Reversible optical transcription of supramolecular chirality into molecular chirality. Science 304, 278–281 (2004).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Felsche, J., Luger, S. & Baerlocher, C. Crystal structures of the hydro-sodalite Na6[AlSiO4]6•8H2O and of the anhydrous sodalite Na6[AlSiO4]6. Zeolites 6, 367–372 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Hayashi, H., Côté, A. P., Furukawa, H., O’Keeffe, M. & Yaghi, O. M. Zeolite A imidazolate frameworks. Nat. Mater. 6, 501–506 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huybers, P. Form generation of polyhedric building shapes. Int. J. Space Struct. 11, 173–181 (1996).

    Article 
    MATH 

    Google Scholar
     

  • Malay, A. D. et al. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 569, 438–442 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Boubekri, R. et al. Raman study of a photochromic diarylethene molecule: a combined theoretical and experimental study. J. Raman Spectrosc. 44, 1777–1785 (2013).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Michel, J. P. et al. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc. Natl Acad. Sci. USA 103, 6184–6189 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments