Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).
Lin, Q., Li, L. & Luo, S. Asymmetric electrochemical catalysis. Chem. Eur. J. 25, 10033–10044 (2019).
Jiao, K.-J. et al. The applications of electrochemical synthesis in asymmetric catalysis. Chem Catal. 2, 3019–3047 (2022).
Rein, J., Zacate, S. B., Mao, K. & Lin, S. A tutorial on asymmetric electrocatalysis. Chem. Soc. Rev. 52, 8106–8125 (2023).
Moeller, K. Anodic olefin coupling reactions: a mechanism driven approach to the development of new synthetic tools. Electrochem. Soc. Interface 25, 53–59 (2016).
Maekawa, H., Itoh, K., Goda, S. & Nishiguchi, I. Enantioselective electrochemical oxidation of enol acetates using a chiral supporting electrolyte. Chirality 15, 95–100 (2003).
Yadav, A. K., Manju, M. & Chhinpa, P. R. Enantioselective cathodic reduction of some prochiral ketones in the presence of (−)-N,N′-dimethylquininium tetrafluoroborate at mercury cathode. Tetrahedron Asymmetry 14, 1079–1081 (2003).
Reichl, K. D., Ess, D. H. & Radosevich, A. T. Catalyzing pyramidal inversion: configurational lability of P-stereogenic phosphines via single electron oxidation. J. Am. Chem. Soc. 135, 9354–9357 (2013).
Bard, A. & Faulkner, L. R. (eds) in Electrochemical Methods Fundamentals and Applications 534–579 (John Wiley, 2001).
Feng, G., Huang, J., Sumpter, B. G., Meunier, V. & Qiao, R. Structure and dynamics of electrical double layers in organic electrolytes. Phys. Chem. Chem. Phys. 12, 5468–5479 (2010).
von Münchow, T., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science 379, 1036–1042 (2023).
Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).
Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).
Naulin, E. et al. Stereoselective synthesis of fissoldhimine alkaloid analogues via sequential electrooxidation and heterodimerization of ureas. Chem. Commun. 60, 11560–11563 (2024).
Komori, T. & Nonaka, T. Stereochemical studies of the electrolytic reactions of organic compounds. 25. Electroorganic reactions on organic electrodes. 6. Electrochemical asymmetric oxidation of unsymmetric sulfides to the corresponding chiral sulfoxides on poly(amino acid)-coated electrodes. J. Am. Chem. Soc. 106, 2656–2659 (1984).
Reidell, A. C., Pazder, K. E., LeBarron, C. T., Stewart, S. A. & Hosseini, S. Modified working electrodes for organic electrosynthesis. ACS Org. Inorg. Au 4, 579–603 (2024).
Schmittel, M. & Burghart, A. Understanding reactivity patterns of radical cations. Angew. Chem. Int. Ed. 36, 2550–2589 (1997).
Gentry, E. C., Rono, L. J., Hale, M. E., Matsuura, R. & Knowles, R. R. Enantioselective synthesis of pyrroloindolines via noncovalent stabilization of indole radical cations and applications to the synthesis of alkaloid natural products. J. Am. Chem. Soc. 140, 3394–3402 (2018).
Das, S. et al. Asymmetric counteranion-directed photoredox catalysis. Science 379, 494–499 (2023).
Ohmura, S. et al. Highly enantioselective radical cation [2 + 2] and [4 + 2] cycloadditions by chiral iron(III) photoredox catalysis. J. Am. Chem. Soc. 145, 15054–15060 (2023).
Xu, Z. et al. Asymmetric counteranion‐directed electrocatalysis for enantioselective control of radical cation. Angew. Chem. Int. Ed. 64, e202413601 (2024).
Guo, H., Fan, Y. C., Sun, Z., Wu, Y. & Kwon, O. Phosphine organocatalysis. Chem. Rev. 118, 10049–10293 (2018).
Imamoto, T. P-stereogenic phosphorus ligands in asymmetric catalysis. Chem. Rev. 124, 8657–8739 (2024).
Dutartre, M., Bayardon, J. & Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 45, 5771–5794 (2016).
Montchamp, J.-L. Phosphorus Chemistry I: Asymmetric Synthesis and Bioactive Compounds (Springer, 2015).
Bergin, E. et al. Synthesis of P-stereogenic phosphorus compounds. Asymmetric oxidation of phosphines under Appel conditions. J. Am. Chem. Soc. 129, 9566–9567 (2007).
Rajendran, K. V., Kennedy, L. & Gilheany, D. G. P-stereogenic phosphorus compounds: effect of aryl substituents on the oxidation of arylmethylphenylphosphanes under asymmetric Appel conditions. Eur. J. Org. Chem. 2010, 5642–5649 (2010).
Perlikowska, W., Gouygou, M., Daran, J., Balavoineb, G. & Mikołajczyka, M. Kinetic resolution of P-chiral tertiary phosphines and chlorophosphines: a new approach to optically active phosphoryl and thiophosphoryl compounds. Tetrahedron Lett. 42, 7841–7845 (2001).
Rusmore, T. A., Behlen, M. J., John, A., Glatzhofer, D. T. & Nicholas, K. M. Oxidative kinetic resolution of P-chiral phosphines catalyzed by chiral (salen)dioxomolybdenum complexes. Mol. Catal. 513, 111776 (2021).
Jennings, E. V., Nikitin, K., Ortin, Y. & Gilheany, D. G. Degenerate nucleophilic substitution in phosphonium salts. J. Am. Chem. Soc. 136, 16217–16226 (2014).
Ohmori, H., Nakai, S., Sekiguchi, M. & Masui, M. Anodic oxidation of organophosphorus compounds. III. Anodic alkoxylation and thioalkoxylation of triphenylphosphine. Chem. Pharm. Bull. 28, 910–915 (1980).
Maeda, H., Koide, T., Maki, T. & Ohmori, H. Electrochemical preparation and some reactions of alkoxy triphenylphosphonium ions. Chem. Pharm. Bull. 43, 1076–1080 (1995).
Maeda, H., Maki, T., Eguchi, K., Koide, T. & Ohmori, H. One-step deoxygenation of alcohols into alkanes by a ‘double electrolysis’ in the presence of a phosphine. Tetrahedron Lett. 35, 4129–4132 (1994).
Sakai, K., Nagai, N., Mizuki, Y., Masui, M. & Ohmori, H. Reaction of electrochemically generated triphenylphosphine radical cation with amides and ureas. Chem. Pharm. Bull. 33, 373–376 (1985).
Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).
Imamoto, T., Kikuchi, S. I., Miura, T. & Wada, Y. Stereospecific reduction of phosphine oxides to phosphines by the use of a methylation reagent and lithium aluminum hydride. Org. Lett. 3, 87–90 (2001).
Rajendran, K. V. & Gilheany, D. G. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride. Chem. Commun. 48, 817–819 (2012).
Wang, T., Han, X., Zhong, F., Yao, W. & Lu, Y. Amino acid-derived bifunctional phosphines for enantioselective transformations. Acc. Chem. Res. 49, 1369–1378 (2016).
Greenfield, S. J., Agarkov, A. & Gilbertson, S. R. High asymmetric induction with β-turn-derived palladium phosphine complexes. Org. Lett. 5, 3069–3072 (2003).
Mino, T., Kashiharab, K. & Yamashita, M. New chiral phosphine–amide ligands in palladium-catalysed asymmetric allylic alkylations. Tetrahedron Asymmetry 12, 287–291 (2001).
Kütt, A. Strengths of acids in acetonitrile. Eur. J. Org. Chem. 2021, 1407–1419 (2021).
Warner, C. J. A., Reeder, A. T. & Jones, S. P-chiral phosphine oxide catalysed reduction of prochiral ketimines using trichlorosilane. Tetrahedron Asymmetry 27, 136–141 (2016).
Laudadio, G. et al. Sulfonamide synthesis through electrochemical oxidative coupling of amines and thiols. J. Am. Chem. Soc. 141, 5664–5668 (2019).
Rajendran, K. V. & Gilheany, D. G. Identification of a key intermediate in the asymmetric Appel process: one pot stereoselective synthesis of P-stereogenic phosphines and phosphine boranes from racemic phosphine oxides. Chem. Commun. 48, 10040–10042 (2012).
Guo, X., Price, N. G. & Zhu, Q. Electrochemical cyanation of alcohols enabled by an iodide-mediated phosphine P(V/III) redox couple. Org. Lett. 26, 7347–7351 (2024).
Zhang, J., Mück-Lichtenfeld, C. & Studer, A. Photocatalytic phosphine-mediated water activation for radical hydrogenation. Nature 619, 506–513 (2023).
Xie, Z.-Z. et al. Photoredox-catalyzed selective α-scission of PR3–OH radicals to access hydroalkylation of alkenes. Org. Lett. 25, 9014–9019 (2023).
Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).
Creary, X., Mehrsheikh-Mohammadi, M. E. & Mcdonald, S. Methylenecyclopropane rearrangement as a probe for free radical substituent effects. σ· values for commonly encountered conjugating and organometallic groups. J. Org. Chem. 52, 3254–3263 (1987).
Sharma, S. Electro-organic reactions: direct and indirect electrolysis. Orient. J. Chem. 40, 321–332 (2024).
Lu, T. & Chen, Q. Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539–555 (2022).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024).
Pracht, P. et al. CREST—a program for the exploration of low-energy molecular chemical space. J. Chem. Phys. 160, 114110 (2024).
Lu, T. Molclus program, version 1.12 (Beijing Kein Research Center for Natural Sciences, 2023); http://www.keinsci.com/research/molclus.html.