Thursday, July 17, 2025
No menu items!
HomeNatureDynamic kinetic resolution of phosphines with chiral supporting electrolytes

Dynamic kinetic resolution of phosphines with chiral supporting electrolytes

  • Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, Q., Li, L. & Luo, S. Asymmetric electrochemical catalysis. Chem. Eur. J. 25, 10033–10044 (2019).

    PubMed 

    Google Scholar
     

  • Jiao, K.-J. et al. The applications of electrochemical synthesis in asymmetric catalysis. Chem Catal. 2, 3019–3047 (2022).


    Google Scholar
     

  • Rein, J., Zacate, S. B., Mao, K. & Lin, S. A tutorial on asymmetric electrocatalysis. Chem. Soc. Rev. 52, 8106–8125 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moeller, K. Anodic olefin coupling reactions: a mechanism driven approach to the development of new synthetic tools. Electrochem. Soc. Interface 25, 53–59 (2016).


    Google Scholar
     

  • Maekawa, H., Itoh, K., Goda, S. & Nishiguchi, I. Enantioselective electrochemical oxidation of enol acetates using a chiral supporting electrolyte. Chirality 15, 95–100 (2003).

    PubMed 

    Google Scholar
     

  • Yadav, A. K., Manju, M. & Chhinpa, P. R. Enantioselective cathodic reduction of some prochiral ketones in the presence of (−)-N,N′-dimethylquininium tetrafluoroborate at mercury cathode. Tetrahedron Asymmetry 14, 1079–1081 (2003).


    Google Scholar
     

  • Reichl, K. D., Ess, D. H. & Radosevich, A. T. Catalyzing pyramidal inversion: configurational lability of P-stereogenic phosphines via single electron oxidation. J. Am. Chem. Soc. 135, 9354–9357 (2013).

    PubMed 

    Google Scholar
     

  • Bard, A. & Faulkner, L. R. (eds) in Electrochemical Methods Fundamentals and Applications 534–579 (John Wiley, 2001).

  • Feng, G., Huang, J., Sumpter, B. G., Meunier, V. & Qiao, R. Structure and dynamics of electrical double layers in organic electrolytes. Phys. Chem. Chem. Phys. 12, 5468–5479 (2010).

    PubMed 

    Google Scholar
     

  • von Münchow, T., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science 379, 1036–1042 (2023).

    ADS 

    Google Scholar
     

  • Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).

    PubMed 

    Google Scholar
     

  • Naulin, E. et al. Stereoselective synthesis of fissoldhimine alkaloid analogues via sequential electrooxidation and heterodimerization of ureas. Chem. Commun. 60, 11560–11563 (2024).


    Google Scholar
     

  • Komori, T. & Nonaka, T. Stereochemical studies of the electrolytic reactions of organic compounds. 25. Electroorganic reactions on organic electrodes. 6. Electrochemical asymmetric oxidation of unsymmetric sulfides to the corresponding chiral sulfoxides on poly(amino acid)-coated electrodes. J. Am. Chem. Soc. 106, 2656–2659 (1984).


    Google Scholar
     

  • Reidell, A. C., Pazder, K. E., LeBarron, C. T., Stewart, S. A. & Hosseini, S. Modified working electrodes for organic electrosynthesis. ACS Org. Inorg. Au 4, 579–603 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmittel, M. & Burghart, A. Understanding reactivity patterns of radical cations. Angew. Chem. Int. Ed. 36, 2550–2589 (1997).


    Google Scholar
     

  • Gentry, E. C., Rono, L. J., Hale, M. E., Matsuura, R. & Knowles, R. R. Enantioselective synthesis of pyrroloindolines via noncovalent stabilization of indole radical cations and applications to the synthesis of alkaloid natural products. J. Am. Chem. Soc. 140, 3394–3402 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Das, S. et al. Asymmetric counteranion-directed photoredox catalysis. Science 379, 494–499 (2023).

    ADS 
    PubMed 

    Google Scholar
     

  • Ohmura, S. et al. Highly enantioselective radical cation [2 + 2] and [4 + 2] cycloadditions by chiral iron(III) photoredox catalysis. J. Am. Chem. Soc. 145, 15054–15060 (2023).

    PubMed 

    Google Scholar
     

  • Xu, Z. et al. Asymmetric counteranion‐directed electrocatalysis for enantioselective control of radical cation. Angew. Chem. Int. Ed. 64, e202413601 (2024).


    Google Scholar
     

  • Guo, H., Fan, Y. C., Sun, Z., Wu, Y. & Kwon, O. Phosphine organocatalysis. Chem. Rev. 118, 10049–10293 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Imamoto, T. P-stereogenic phosphorus ligands in asymmetric catalysis. Chem. Rev. 124, 8657–8739 (2024).

    PubMed 

    Google Scholar
     

  • Dutartre, M., Bayardon, J. & Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 45, 5771–5794 (2016).

    PubMed 

    Google Scholar
     

  • Montchamp, J.-L. Phosphorus Chemistry I: Asymmetric Synthesis and Bioactive Compounds (Springer, 2015).

  • Bergin, E. et al. Synthesis of P-stereogenic phosphorus compounds. Asymmetric oxidation of phosphines under Appel conditions. J. Am. Chem. Soc. 129, 9566–9567 (2007).

    PubMed 

    Google Scholar
     

  • Rajendran, K. V., Kennedy, L. & Gilheany, D. G. P-stereogenic phosphorus compounds: effect of aryl substituents on the oxidation of arylmethylphenylphosphanes under asymmetric Appel conditions. Eur. J. Org. Chem. 2010, 5642–5649 (2010).


    Google Scholar
     

  • Perlikowska, W., Gouygou, M., Daran, J., Balavoineb, G. & Mikołajczyka, M. Kinetic resolution of P-chiral tertiary phosphines and chlorophosphines: a new approach to optically active phosphoryl and thiophosphoryl compounds. Tetrahedron Lett. 42, 7841–7845 (2001).


    Google Scholar
     

  • Rusmore, T. A., Behlen, M. J., John, A., Glatzhofer, D. T. & Nicholas, K. M. Oxidative kinetic resolution of P-chiral phosphines catalyzed by chiral (salen)dioxomolybdenum complexes. Mol. Catal. 513, 111776 (2021).


    Google Scholar
     

  • Jennings, E. V., Nikitin, K., Ortin, Y. & Gilheany, D. G. Degenerate nucleophilic substitution in phosphonium salts. J. Am. Chem. Soc. 136, 16217–16226 (2014).

    PubMed 

    Google Scholar
     

  • Ohmori, H., Nakai, S., Sekiguchi, M. & Masui, M. Anodic oxidation of organophosphorus compounds. III. Anodic alkoxylation and thioalkoxylation of triphenylphosphine. Chem. Pharm. Bull. 28, 910–915 (1980).


    Google Scholar
     

  • Maeda, H., Koide, T., Maki, T. & Ohmori, H. Electrochemical preparation and some reactions of alkoxy triphenylphosphonium ions. Chem. Pharm. Bull. 43, 1076–1080 (1995).


    Google Scholar
     

  • Maeda, H., Maki, T., Eguchi, K., Koide, T. & Ohmori, H. One-step deoxygenation of alcohols into alkanes by a ‘double electrolysis’ in the presence of a phosphine. Tetrahedron Lett. 35, 4129–4132 (1994).


    Google Scholar
     

  • Sakai, K., Nagai, N., Mizuki, Y., Masui, M. & Ohmori, H. Reaction of electrochemically generated triphenylphosphine radical cation with amides and ureas. Chem. Pharm. Bull. 33, 373–376 (1985).


    Google Scholar
     

  • Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).


    Google Scholar
     

  • Imamoto, T., Kikuchi, S. I., Miura, T. & Wada, Y. Stereospecific reduction of phosphine oxides to phosphines by the use of a methylation reagent and lithium aluminum hydride. Org. Lett. 3, 87–90 (2001).

    PubMed 

    Google Scholar
     

  • Rajendran, K. V. & Gilheany, D. G. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride. Chem. Commun. 48, 817–819 (2012).


    Google Scholar
     

  • Wang, T., Han, X., Zhong, F., Yao, W. & Lu, Y. Amino acid-derived bifunctional phosphines for enantioselective transformations. Acc. Chem. Res. 49, 1369–1378 (2016).

    PubMed 

    Google Scholar
     

  • Greenfield, S. J., Agarkov, A. & Gilbertson, S. R. High asymmetric induction with β-turn-derived palladium phosphine complexes. Org. Lett. 5, 3069–3072 (2003).

    PubMed 

    Google Scholar
     

  • Mino, T., Kashiharab, K. & Yamashita, M. New chiral phosphine–amide ligands in palladium-catalysed asymmetric allylic alkylations. Tetrahedron Asymmetry 12, 287–291 (2001).


    Google Scholar
     

  • Kütt, A. Strengths of acids in acetonitrile. Eur. J. Org. Chem. 2021, 1407–1419 (2021).


    Google Scholar
     

  • Warner, C. J. A., Reeder, A. T. & Jones, S. P-chiral phosphine oxide catalysed reduction of prochiral ketimines using trichlorosilane. Tetrahedron Asymmetry 27, 136–141 (2016).


    Google Scholar
     

  • Laudadio, G. et al. Sulfonamide synthesis through electrochemical oxidative coupling of amines and thiols. J. Am. Chem. Soc. 141, 5664–5668 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rajendran, K. V. & Gilheany, D. G. Identification of a key intermediate in the asymmetric Appel process: one pot stereoselective synthesis of P-stereogenic phosphines and phosphine boranes from racemic phosphine oxides. Chem. Commun. 48, 10040–10042 (2012).


    Google Scholar
     

  • Guo, X., Price, N. G. & Zhu, Q. Electrochemical cyanation of alcohols enabled by an iodide-mediated phosphine P(V/III) redox couple. Org. Lett. 26, 7347–7351 (2024).

    PubMed 

    Google Scholar
     

  • Zhang, J., Mück-Lichtenfeld, C. & Studer, A. Photocatalytic phosphine-mediated water activation for radical hydrogenation. Nature 619, 506–513 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, Z.-Z. et al. Photoredox-catalyzed selective α-scission of PR3–OH radicals to access hydroalkylation of alkenes. Org. Lett. 25, 9014–9019 (2023).

    PubMed 

    Google Scholar
     

  • Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).


    Google Scholar
     

  • Creary, X., Mehrsheikh-Mohammadi, M. E. & Mcdonald, S. Methylenecyclopropane rearrangement as a probe for free radical substituent effects. σ· values for commonly encountered conjugating and organometallic groups. J. Org. Chem. 52, 3254–3263 (1987).


    Google Scholar
     

  • Sharma, S. Electro-organic reactions: direct and indirect electrolysis. Orient. J. Chem. 40, 321–332 (2024).


    Google Scholar
     

  • Lu, T. & Chen, Q. Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539–555 (2022).

    PubMed 

    Google Scholar
     

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    PubMed 

    Google Scholar
     

  • Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024).

    PubMed 

    Google Scholar
     

  • Pracht, P. et al. CREST—a program for the exploration of low-energy molecular chemical space. J. Chem. Phys. 160, 114110 (2024).

    ADS 
    PubMed 

    Google Scholar
     

  • Lu, T. Molclus program, version 1.12 (Beijing Kein Research Center for Natural Sciences, 2023); http://www.keinsci.com/research/molclus.html.

  • RELATED ARTICLES

    Most Popular

    Recent Comments