Wednesday, March 12, 2025
No menu items!
HomeNatureDual neuromodulatory dynamics underlie birdsong learning

Dual neuromodulatory dynamics underlie birdsong learning

  • Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Gershman, S. J. & Uchida, N. Believing in dopamine. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-019-0220-7 (2019).

  • Wood, A. N. New roles for dopamine in motor skill acquisition: lessons from primates, rodents, and songbirds. J. Neurophysiol. 125, 2361–2374 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Blain, B. & Sharot, T. Intrinsic reward: potential cognitive and neural mechanisms. Curr. Opin. Behav. Sci. 39, 113–118 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Hisey, E., Kearney, M. G. & Mooney, R. A common neural circuit mechanism for internally guided and externally reinforced forms of motor learning. Nat. Neurosci. 21, 589–597 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thorndike, E. L. The Elements of Psychology (Seiler, 1905).

  • Markowitz, J. E. et al. Spontaneous behaviour is structured by reinforcement without explicit reward. Nature 614, 108–117 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Sakata, J. T., Woolley, S. C., Fay, R. R. & Popper, A. N. The Neuroethology of Birdsong (Springer Nature, 2020).

  • Mooney, R. Birdsong. Curr. Biol. 32, R1090–R1094 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Derégnaucourt, S., Mitra, P. P., Fehér, O., Pytte, C. & Tchernichovski, O. How sleep affects the developmental learning of bird song. Nature 433, 710–716 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Goffinet, J., Brudner, S., Mooney, R. & Pearson, J. Low-dimensional learned feature spaces quantify individual and group differences in vocal repertoires. eLife 10, e67855 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brudner, S., Pearson, J. & Mooney, R. Generative models of birdsong learning link circadian fluctuations in song variability to changes in performance. PLoS Comput. Biol. 19, e1011051 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eales, L. A. Song learning in zebra finches: some effects of song model availability on what is learnt and when. Anim. Behav. 33, 1293–1300 (1985).

    Article 
    MATH 

    Google Scholar
     

  • Price, P. H. Developmental determinants of structure in zebra finch song. J. Comp. Physiol. Psychol. 93, 260–277 (1979).

    Article 
    MATH 

    Google Scholar
     

  • Singh Alvarado, J. et al. Neural dynamics underlying birdsong practice and performance. Nature 599, 635–639 (2021).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Person, A. L., Gale, S. D., Farries, M. A. & Perkel, D. J. Organization of the songbird basal ganglia, including area X. J. Comp. Neurol. 508, 840–866 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Feenders, G. et al. Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin. PLoS ONE 3, e1768 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Doya, K. & Sejnowski, T. A novel reinforcement model of birdsong vocalization learning. In Proc. Advances in Neural Information Processing Systems Vol. 7 (eds Tesauro, G. et al.) 101–108 (MIT, 1994).

  • Fee, M. S. & Goldberg, J. H. A hypothesis for basal ganglia-dependent reinforcement learning in the songbird. Neuroscience 198, 152–170 (2011).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Duffy, A., Latimer, K. W., Goldberg, J. H., Fairhall, A. L. & Gadagkar, V. Dopamine neurons evaluate natural fluctuations in performance quality. Cell Rep 38, 110574 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gadagkar, V. et al. Dopamine neurons encode performance error in singing birds. Science 354, 1278–1282 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Xiao, L. et al. A basal ganglia circuit sufficient to guide birdsong learning. Neuron 98, 208–221.e5 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mohebi, A., Collins, V. L. & Berke, J. D. Accumbens cholinergic interneurons dynamically promote dopamine release and enable motivation. eLife 12, e85011 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. An action potential initiation mechanism in distal axons for the control of dopamine release. Science https://doi.org/10.1126/science.abn0532 (2022).

  • Kramer, P. F. et al. Synaptic-like axo-axonal transmission from striatal cholinergic interneurons onto dopaminergic fibers. Neuron 110, 2949–2960.e4 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sun, F. et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 17, 1156–1166 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ko, D. & Wanat, M. J. Phasic dopamine transmission reflects initiation vigor and exerted effort in an action- and region-specific manner. J. Neurosci. 36, 2202–2211 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Panigrahi, B. et al. Dopamine is required for the neural representation and control of movement vigor. Cell 162, 1418–1430 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Roeser, A. et al. Dopaminergic error signals retune to social feedback during courtship. Nature 623, 375–380 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bottjer, S. W., Halsema, K. A., Brown, S. A. & Miesner, E. A. Axonal connections of a forebrain nucleus involved with vocal learning in zebra finches. J. Comp. Neurol. 279, 312–326 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Chantranupong, L. et al. Dopamine and glutamate regulate striatal acetylcholine in decision-making. Nature 621, 577–585 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krok, A. C. et al. Intrinsic dopamine and acetylcholine dynamics in the striatum of mice. Nature 621, 543–549 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jing, M. et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 17, 1139–1146 (2020).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zingg, B. et al. AAV-mediated anterograde transsynaptic tagging: mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kozhevnikov, A. A. & Fee, M. S. Singing-related activity of identified HVC neurons in the zebra finch. J. Neurophysiol. 97, 4271–4283 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Goldberg, J. H. & Fee, M. S. Singing-related neural activity distinguishes four classes of putative striatal neurons in the songbird basal ganglia. J. Neurophysiol. 103, 2002–2014 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Tumer, E. C. & Brainard, M. S. Performance variability enables adaptive plasticity of ‘crystallized’ adult birdsong. Nature 450, 1240–1244 (2007).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fiete, I. R., Fee, M. S. & Seung, H. S. Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. J. Neurophysiol. 98, 2038–2057 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Farries, M. A. & Fairhall, A. L. Reinforcement learning with modulated spike timing dependent synaptic plasticity. J. Neurophysiol. 98, 3648–3665 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Long, M. A. & Fee, M. S. Using temperature to analyse temporal dynamics in the songbird motor pathway. Nature 456, 189–194 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ding, L. & Perkel, D. J. Dopamine modulates excitability of spiny neurons in the avian basal ganglia. J. Neurosci. 22, 5210–5218 (2002).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kubikova, L., Wada, K. & Jarvis, E. D. Dopamine receptors in a songbird brain. J. Comp. Neurol. 518, 741–769 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Richfield, E. K., Penney, J. B. & Young, A. B. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30, 767–777 (1989).

    Article 
    PubMed 

    Google Scholar
     

  • Kearney, M. G., Warren, T. L., Hisey, E., Qi, J. & Mooney, R. Discrete evaluative and premotor circuits enable vocal learning in songbirds. Neuron 104, 559–575.e6 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamaguchi, K., Tschida, K. A., Yoon, I., Donald, B. R. & Mooney, R. Auditory synapses to song premotor neurons are gated off during vocalization in zebra finches. eLife 3, e01833 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamaguchi, K. & Mooney, R. Recurrent interactions between the input and output of a songbird cortico-basal ganglia pathway are implicated in vocal sequence variability. J. Neurosci. 32, 11671–11687 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dan Foresee, F. & Hagan, M. T. Gauss-Newton approximation to Bayesian learning. In Proc. International Conference on Neural Networks 1930–1935 (IEEE, 1997).

  • Bates, D., Machler, M., Bolker, B. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).


    Google Scholar
     

  • Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Stat. Methodol. 58, 267–288 (1996).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lopes, G. et al. Bonsai: an event-based framework for processing and controlling data streams. Front. Neuroinform. 9, 7 (2015).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pennington, Z. T. et al. ezTrack: an open-source video analysis pipeline for the investigation of animal behavior. Sci. Rep. 9, 19979 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments