Friday, July 18, 2025
No menu items!
HomeNatureDual interfacial H-bonding-enhanced deep-blue hybrid copper–iodide LEDs

Dual interfacial H-bonding-enhanced deep-blue hybrid copper–iodide LEDs

  • Wang, J.-J. et al. High efficiency warm-white light-emitting diodes based on copper–iodide clusters. Nat. Photon. 18, 200–206 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X. et al. Near-unity blue luminance from lead-free copper halides for light-emitting diodes. Nano Energy 91, 106664 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, K. et al. A new type of hybrid copper iodide as nontoxic and ultrastable LED emissive layer material. ACS Energy Lett. 6, 2565–2574 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lin, S. et al. Efficient large-area (81 cm2) ternary copper halides light-emitting diodes with external quantum efficiency exceeding 13% via host–guest strategy. Adv. Mater. 36, 2313570 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Han, T.-H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Woo, J. Y. et al. Advances in solution‐processed OLEDs and their prospects for use in displays. Adv. Mater. 35, 2370314 (2023).

    Article 

    Google Scholar
     

  • Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, S., Zhang, H., Zhang, B., Xie, Z. & Wong, W.-Y. Towards high-power-efficiency solution-processed OLEDs: material and device perspectives. Mater. Sci. Eng. R 140, 100547 (2020).

    Article 

    Google Scholar
     

  • Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y.-K. et al. Self-assembled monolayer-based blue perovskite LEDs. Sci. Adv. 9, eadh2140 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, J. et al. Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, H., Arneson, C. E., Fan, D. & Forrest, S. R. Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects. Nature 626, 300–305 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Min, H. et al. Additive treatment yields high-performance lead-free perovskite light-emitting diodes. Nat. Photon. 17, 755–760 (2023).

  • Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, N. et al. Versatile host materials for both D‐A type and multi‐resonance TADF emitters towards solution‐processed OLEDs with nearly 30% EQE. Adv. Mater. 35, 2300510 (2023).

  • Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Troyano, J., Zamora, F. & Delgado, S. Copper (I)–iodide cluster structures as functional and processable platform materials. Chem. Soc. Rev. 50, 4606–4628 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, Y. et al. A systematic approach to achieving high performance hybrid lighting phosphors with excellent thermal‐and photostability. Adv. Funct. Mater. 27, 1603444 (2017).

    Article 

    Google Scholar
     

  • Liu, W. et al. All-in-one: achieving robust, strongly luminescent and highly dispersible hybrid materials by combining ionic and coordinate bonds in molecular crystals. J. Am. Chem. Soc. 139, 9281–9290 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hei, X. et al. Blending ionic and coordinate bonds in hybrid semiconductor materials: a general approach toward robust and solution-processable covalent/coordinate network structures. J. Am. Chem. Soc. 142, 4242–4253 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, N. et al. Overcoming efficiency limitation of cluster light-emitting diodes with asymmetrically functionalized biphosphine Cu4I4 cubes. J. Am. Chem. Soc. 144, 6551–6557 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, M. et al. Highly efficient sky blue electroluminescence from ligand-activated copper iodide clusters: overcoming the limitations of cluster light-emitting diodes. Sci. Adv. 5, eaav9857 (2019).

  • Ma, Y. et al. Allochroic cluster light-emitting diodes based on unique μ3-tetraphosphine Cu3X3 crowns with tunable excited states. Sci. Adv. 10, eadk3983 (2024).

  • Seo, G. et al. Lead-free halide light-emitting diodes with external quantum efficiency exceeding 7% using host–dopant strategy. ACS Energy Lett. 6, 2584–2593 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jun, T. et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 30, 1804547 (2018).

    Article 

    Google Scholar
     

  • Wang, L. et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Lett. 20, 3568–3576 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, J. et al. Polycrystalline silicon tunnelling recombination layers for high-efficiency perovskite/tunnel oxide passivating contact tandem solar cells. Nat. Energy 8, 1250–1261 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, W. et al. A family of highly efficient CuI-based lighting phosphors prepared by a systematic, bottom-up synthetic approach. J. Am. Chem. Soc. 137, 9400–9408 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Q., Ouyang, J., Yang, Y., Ito, T. & Kido, J. Ultrahigh efficiency green polymer light-emitting diodes by nanoscale interface modification. Appl. Phys. Lett. 83, 4695–4697 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Artem’ev, A. V. et al. Family of robust and strongly luminescent CuI-based hybrid networks made of ionic and dative bonds. Chem. Mater. 32, 10708–10718 (2020).

    Article 

    Google Scholar
     

  • Chang, J. et al. Electronic and optical properties of perovskite compounds MA1−αFAαPbI3−βXβ (X = Cl, Br) explored for photovoltaic applications. RSC Adv. 9, 7015–7024 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Mello, J. C., Wittmann, H. F. & Friend, R. H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9, 230–232 (1997).

    Article 

    Google Scholar
     

  • Zhu, C. et al. Supramolecular assembly of blue and green halide perovskites with near-unity photoluminescence. Science 383, 86–93 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hofbeck, T., Monkowius, U. & Yersin, H. Highly efficient luminescence of Cu(I) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. J. Am. Chem. Soc. 137, 399–404 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fan, H. et al. Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nat. Commun. 11, 5402 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, K. et al. Narrow band gap hybrid copper(I)iodides: designer materials for optoelectronic applications. Chem. Mater. 36, 11139–11149 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Pitaro, M. et al. A carbazole-based self-assembled monolayer as the hole transport layer for efficient and stable Cs0.25FA0.75Sn0.5Pb0.5I3 solar cells. J. Mater. Chem. A 11, 11755–11766 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Maréchal, Y. The Hydrogen Bond and the Water Molecule: the Physics and Chemistry of Water, Aqueous and Bio-media (Elsevier, 2006).

  • Nijem, N. et al. Tuning the gate opening pressure of metal–organic frameworks (MOFs) for the selective separation of hydrocarbons. J. Am. Chem. Soc. 134, 15201–15204 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reid, O. G. et al. Quantitative analysis of time-resolved microwave conductivity data. J. Phys. D 50, 493002 (2017).

    Article 

    Google Scholar
     

  • Zhang, F. et al. Enhanced charge transport in 2D perovskites via fluorination of organic cation. J. Am. Chem. Soc. 141, 5972–5979 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16 Revision C. 01, 2016 (Gaussian Inc., Wallingford, CT, 2016).

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments