Thursday, March 20, 2025
No menu items!
HomeNatureDrivers of avian genomic change revealed by evolutionary rate decomposition

Drivers of avian genomic change revealed by evolutionary rate decomposition

  • Zhang, G. et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sackton, T. B. et al. Convergent regulatory evolution and loss of flight in paleognathous birds. Science 364, 74–78 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Whitney, O. et al. Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 346, 1256780 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yusuf, L. et al. Noncoding regions underpin avian bill shape diversification at macroevolutionary scales. Genome Res. 30, 553–565 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. Nature 587, 252–257 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Stiller, J. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wright, N. A., Gregory, T. R. & Witt, C. C. Metabolic “engines” of flight drive genome size reduction in birds. Proc. Biol. Sci. 281, 20132780 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Organ, C. L., Shedlock, A. M., Meade, A., Pagel, M. & Edwards, S. V. Origin of avian genome size and structure in non-avian dinosaurs. Nature 446, 180–184 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pfenning, A. R. et al. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346, 1256846 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mason, N. A. et al. Song evolution, speciation, and vocal learning in passerine birds. Evolution 71, 786–796 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Toomey, M. B. et al. High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. Proc. Natl Acad. Sci. USA 114, 5219–5224 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Aguillon, S. M., Walsh, J. & Lovette, I. J. Extensive hybridization reveals multiple coloration genes underlying a complex plumage phenotype. Proc. Biol. Sci. 288, 20201805 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abzhanov, A. et al. The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature 442, 563–567 (2006).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bravo, G. A., Schmitt, C. J. & Edwards, S. V. What have we learned from the first 500 avian genomes? Annu. Rev. Ecol. Evol. Syst. 52, 611–639 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Gregory, T. R., Andrews, C. B., McGuire, J. A. & Witt, C. C. The smallest avian genomes are found in hummingbirds. Proc. Biol. Sci. 276, 3753–3757 (2009).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Price-Waldman, R. & Stoddard, M. C. Avian coloration genetics: recent advances and emerging questions. J. Hered. 112, 395–416 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Smith, S. D., Pennell, M. W., Dunn, C. W. & Edwards, S. V. Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35, 415–425 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Lanfear, R., Ho, S. Y. W., Love, D. & Bromham, L. Mutation rate is linked to diversification in birds. Proc. Natl Acad. Sci. USA 107, 20423–20428 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berv, J. S. et al. Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction. Sci. Adv. 10, eadp0114 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bromham, L. Why do species vary in their rate of molecular evolution? Biol. Lett. 5, 401–404 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weber, C. C., Nabholz, B., Romiguier, J. & Ellegren, H. Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol. 15, 542 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Botero-Castro, F., Figuet, E., Tilak, M.-K., Nabholz, B. & Galtier, N. Avian genomes revisited: hidden genes uncovered and the rates versus traits paradox in birds. Mol. Biol. Evol. 34, 3123–3131 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berv, J. S. & Field, D. J. Genomic signature of an avian Lilliput effect across the K–Pg extinction. Syst. Biol. 67, 1–13 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Montoya, P., Cadena, C. D., Claramunt, S. & Duchêne, D. A. Environmental niche and flight intensity are associated with molecular evolutionary rates in a large avian radiation. BMC Ecol. Evol. 22, 95 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Iglesias-Carrasco, M., Jennions, M. D., Ho, S. Y. W. & Duchêne, D. A. Sexual selection, body mass and molecular evolution interact to predict diversification in birds. Proc. Biol. Sci. 286, 20190172 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duchêne, D. A. et al. Linking branch lengths across sets of loci provides the highest statistical support for phylogenetic inference. Mol. Biol. Evol. 37, 1202–1210 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Snir, S., Wolf, Y. I. & Koonin, E. V. Universal pacemaker of genome evolution. PLoS Comput. Biol. 8, e1002785 (2012).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lanfear, R., Welch, J. J. & Bromham, L. Watching the clock: studying variation in rates of molecular evolution between species. Trends Ecol. Evol. 25, 495–503 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Duchêne, D. A., Duchêne, S., Stiller, J., Heller, R. & Ho, S. Y. W. ClockstaRX: testing molecular clock hypotheses with genomic data. Genome Biol. Evol. 16, evae064 (2024).

  • Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst. 23, 263–286 (1992).

    Article 
    MATH 

    Google Scholar
     

  • Bergeron, L. A. et al. Evolution of the germline mutation rate across vertebrates. Nature 615, 285–291 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jetz, W., Sekercioglu, C. H. & Böhning-Gaese, K. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6, 2650–2657 (2008).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Brown, W. M., Prager, E. M., Wang, A. & Wilson, A. C. Mitochondrial DNA sequences of primates: tempo and mode of evolution. J. Mol. Evol. 18, 225–239 (1982).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Welch, J. J., Bininda-Emonds, O. R. P. & Bromham, L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol. Biol. 8, 53 (2008).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Germain, R. R. et al. Species-specific traits mediate avian demographic responses under past climate change. Nat. Ecol. Evol. 7, 862–872 (2023).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Claramunt, S., Derryberry, E. P., Remsen, J. V. Jr & Brumfield, R. T. High dispersal ability inhibits speciation in a continental radiation of passerine birds. Proc. Biol. Sci. 279, 1567–1574 (2012).

    PubMed 

    Google Scholar
     

  • Ksepka, D. T. et al. Tempo and pattern of avian brain size evolution. Curr. Biol. 30, 2026–2036.e3 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Harries, P. J. & Knorr, P. O. What does the ‘Lilliput effect’ mean? Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 4–10 (2009).

    Article 
    MATH 

    Google Scholar
     

  • Brown, J. W., Rest, J. S., García-Moreno, J., Sorenson, M. D. & Mindell, D. P. Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biol. 6, 6 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waters, P. D. et al. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc. Natl Acad. Sci. USA 118, e2112494118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, J. et al. A new emu genome illuminates the evolution of genome configuration and nuclear architecture of avian chromosomes. Genome Res. 31, 497–511 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Germain, R. R. et al. Changes in the functional diversity of modern bird species over the last million years. Proc. Natl Acad. Sci. USA 120, e2201945119 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bryant, D. & Hahn, M. W. in Phylogenetics in the Genomic Era (eds Scornavacca, C., Delsuc, F. & Galtier, N.) 3.4:1–3.4:23 (HAL, 2020).

  • Xu, Y. et al. Ecological predictors of interspecific variation in bird bill and leg lengths on a global scale. Proc. Biol. Sci. 290, 20231387 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Shakya, S. B., Edwards, S. V. & Sackton, T. B. Convergent evolution of noncoding elements associated with short tarsus length in birds. Preprint at bioRxiv https://doi.org/10.1101/2024.04.30.591925 (2024).

  • Rezatabar, S. et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol. 234, 14951–14965 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cannell, I. G. et al. p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc. Natl Acad. Sci. USA 107, 5375–5380 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kim, J. et al. β-Arrestin 1 regulates β2-adrenergic receptor-mediated skeletal muscle hypertrophy and contractility. Skelet. Muscle 8, 39 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Najafi, A., Sequeira, V., Kuster, D. W. D. & van der Velden, J. β-Adrenergic receptor signalling and its functional consequences in the diseased heart. Eur. J. Clin. Invest. 46, 362–374 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lynch, M. & Kewalramani, A. Messenger RNA surveillance and the evolutionary proliferation of introns. Mol. Biol. Evol. 20, 563–571 (2003).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wolin, S. L. & Maquat, L. E. Cellular RNA surveillance in health and disease. Science 366, 822–827 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Singh, P., Saha, U., Paira, S. & Das, B. Nuclear mRNA surveillance mechanisms: function and links to human disease. J. Mol. Biol. 430, 1993–2013 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Pan, S. et al. Convergent genomic signatures of flight loss in birds suggest a switch of main fuel. Nat. Commun. 10, 2756 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. USA 116, 7916–7925 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Binet, M., Gascuel, O., Scornavacca, C., Douzery, E. J. P. & Pardi, F. Fast and accurate branch lengths estimation for phylogenomic trees. BMC Bioinformatics 17, 23 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ducatez, S. & Field, D. J. Disentangling the avian altricial-precocial spectrum: quantitative assessment of developmental mode, phylogenetic signal, and dimensionality. Evolution 75, 2717–2735 (2021).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Goolsby, E. W., Bruggeman, J. & Ané, C. Rphylopars: fast multivariate phylogenetic comparative methods for missing data and within-species variation. Methods Ecol. Evol. 8, 22–27 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Lanfear, R. et al. Taller plants have lower rates of molecular evolution. Nat. Commun. 4, 1879 (2013).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Venditti, C. & Pagel, M. Speciation as an active force in promoting genetic evolution. Trends Ecol. Evol. 25, 14–20 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Duchêne, D. A., Hua, X. & Bromham, L. Phylogenetic estimates of diversification rate are affected by molecular rate variation. J. Evol. Biol. 30, 1884–1897 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Hoffman, M. & Gelman, A. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593–1623 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).

    Article 
    MATH 

    Google Scholar
     

  • Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).

    Article 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis 2nd edn (CRC Press, 2003).

  • Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ho, L. S. T. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article 
    MATH 

    Google Scholar
     

  • Schliep, K. P. phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593 (2010).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jermiin, L. S., Jayaswal, V., Ababneh, F. M. & Robinson, J. Identifying optimal models of evolution. Methods Mol. Biol. 1525, 379–420 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Naser-Khdour, S., Minh, B. Q., Zhang, W., Stone, E. A. & Lanfear, R. The prevalence and impact of model violations in phylogenetic analysis. Genome Biol. Evol. 11, 3341–3352 (2019).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Goldman, N. Statistical tests of models of DNA substitution. J. Mol. Evol. 36, 182–198 (1993).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Duchêne, D. A., Duchêne, S. & Ho, S. Y. W. New statistical criteria detect phylogenetic bias caused by compositional heterogeneity. Mol. Biol. Evol. 34, 1529–1534 (2017).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Foster, P. G. Modeling compositional heterogeneity. Syst. Biol. 53, 485–495 (2004).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Duchêne, D. A., Duchêne, S. & Ho, S. Y. W. PhyloMAd: efficient assessment of phylogenomic model adequacy. Bioinformatics 34, 2300–2301 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Article 
    MATH 

    Google Scholar
     

  • Björklund, M. Be careful with your principal components. Evolution 73, 2151–2158 (2019).

    Article 
    PubMed 
    MATH 

    Google Scholar
     

  • Mendes, F. K. & Hahn, M. W. Gene tree discordance causes apparent substitution rate variation. Syst. Biol. 65, 711–721 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Boyle, E. I. et al. GO::TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20, 3710–3715 (2004).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation 2, 100141 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29, 1830–1831 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934).

    Article 
    MATH 

    Google Scholar
     

  • Duchêne, D. A. et al. Drivers of avian genomic change revealed by evolutionary rate decomposition. figshare https://doi.org/10.6084/m9.figshare.27323229 (2025).

  • Duchene, D. duchene/b10k_family_rates: v1.0. Zenodo https://doi.org/10.5281/zenodo.14848361 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments