Monday, November 25, 2024
No menu items!
HomeNatureDopamine dynamics are dispensable for movement but promote reward responses

Dopamine dynamics are dispensable for movement but promote reward responses

  • Liu, C., Goel, P. & Kaeser, P. S. Spatial and temporal scales of dopamine transmission. Nat. Rev. Neurosci. 22, 345–358 (2021).

    PubMed Central 

    Google Scholar
     

  • Grace, A. A. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 17, 524–532 (2016).

    CAS 
    PubMed Central 

    Google Scholar
     

  • da Silva, J. A., Tecuapetla, F., Paixao, V. & Costa, R. M. Dopamine neuron activity before action initiation gates and invigorates future movements. Nature 554, 244–248 (2018).

    ADS 

    Google Scholar
     

  • Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Dodson, P. D. et al. Representation of spontaneous movement by dopaminergic neurons is cell-type selective and disrupted in parkinsonism. Proc. Natl Acad. Sci. USA 113, E2180–E2188 (2016).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Jin, X. & Costa, R. M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Berke, J. D. What does dopamine mean? Nat. Neurosci. https://doi.org/10.1038/s41593-018-0152-y (2018).

  • Coddington, L. T. & Dudman, J. T. Learning from action: reconsidering movement signaling in midbrain dopamine neuron activity. Neuron 104, 63–77 (2019).

    CAS 

    Google Scholar
     

  • Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 30, 259–288 (2007).

    CAS 

    Google Scholar
     

  • Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS 

    Google Scholar
     

  • Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616.e25 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Amo, R. et al. A gradual temporal shift of dopamine responses mirrors the progression of temporal difference error in machine learning. Nat. Neurosci. 25, 1082–1092 (2022).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Watabe-Uchida, M., Eshel, N. & Uchida, N. Neural circuitry of reward prediction error. Annu. Rev. Neurosci. 40, 373–394 (2017).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Primers 3, 17013 (2017).


    Google Scholar
     

  • Cotzias, G. C., Van Woert, M. H. & Schiffer, L. M. Aromatic amino acids and modification of parkinsonism. N. Engl. J. Med. 276, 374–379 (1967).

    CAS 

    Google Scholar
     

  • Carlsson, A. A paradigm shift in brain research. Science 294, 1021–1024 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Carlsson, A. On the problem of the mechanism of action of some psychopharmaca. Psychiatr. Neurol. 140, 220–222 (1960).

    CAS 

    Google Scholar
     

  • Bakhurin, K. et al. Force tuning explains changes in phasic dopamine signaling during stimulus-reward learning. Preprint at bioRxiv https://doi.org/10.1101/2023.04.23.537994 (2023).

  • Jeong, H. et al. Mesolimbic dopamine release conveys causal associations. Science 378, eabq6740 (2022).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Berridge, K. C., Robinson, T. E. & Aldridge, J. W. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr. Opin. Pharmacol. 9, 65–73 (2009).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Niv, Y., Daw, N. D., Joel, D. & Dayan, P. Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology 191, 507–520 (2007).

    CAS 

    Google Scholar
     

  • Hamilos, A. E. et al. Slowly evolving dopaminergic activity modulates the moment-to-moment probability of reward-related self-timed movements. eLife 10, e62583 (2021).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Mohebi, A. et al. Dissociable dopamine dynamics for learning and motivation. Nature 570, 65–70 (2019).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Howe, M. et al. Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movement. eLife 8, e44903 (2019).

    PubMed Central 

    Google Scholar
     

  • Yagishita, S. et al. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science 345, 1616–1620 (2014).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Crego, A. C. G. et al. Complementary control over habits and behavioral vigor by phasic activity in the dorsolateral striatum. J. Neurosci. 40, 2139–2153 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Bova, A. et al. Precisely timed dopamine signals establish distinct kinematic representations of skilled movements. eLife 9, e61591 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Howard, C. D., Li, H., Geddes, C. E. & Jin, X. Dynamic nigrostriatal dopamine biases action selection. Neuron 93, 1436–1450.e8 (2017).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Liu, C. et al. An action potential initiation mechanism in distal axons for the control of dopamine release. Science 375, 1378–1385 (2022).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Sun, F. et al. Next-generation GRAB sensors for monitoring dopaminergic activity in vivo. Nat. Methods 17, 1156–1166 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Patriarchi, T. et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 17, 1147–1155 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Liu, C., Kershberg, L., Wang, J., Schneeberger, S. & Kaeser, P. S. Dopamine secretion is mediated by sparse active zone-like release sites. Cell 172, 706–718.e15 (2018).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Banerjee, A. et al. Molecular and functional architecture of striatal dopamine release sites. Neuron 110, 248–265.e9 (2022).

    CAS 

    Google Scholar
     

  • Robinson, B. G. et al. RIM is essential for stimulated but not spontaneous somatodendritic dopamine release in the midbrain. eLife 8, e47972 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Zych, S. M. & Ford, C. P. Divergent properties and independent regulation of striatal dopamine and GABA co-transmission. Cell Rep. 39, 110823 (2022).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Parker, J. G. et al. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning. Proc. Natl Acad. Sci. USA 107, 13491–13496 (2010).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Zweifel, L. S. et al. Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior. Proc. Natl Acad. Sci. USA 106, 7281–7288 (2009).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4, 2877–2890 (1984).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Grace, A. A. & Bunney, B. S. The control of firing pattern in nigral dopamine neurons: single spike firing. J. Neurosci. 4, 2866–2876 (1984).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Banerjee, A., Lee, J., Nemcova, P., Liu, C. & Kaeser, P. S. Synaptotagmin-1 is the Ca2+ sensor for fast striatal dopamine release. eLife 9, e58359 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Ungerstedt, U. Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. Suppl. 367, 69–93 (1971).

    CAS 

    Google Scholar
     

  • Keefe, K. A., Salamone, J. D., Zigmond, M. J. & Stricker, E. M. Paradoxical kinesia in parkinsonism is not caused by dopamine release. Studies in an animal model. Arch. Neurol. 46, 1070–1075 (1989).

    CAS 

    Google Scholar
     

  • Lebowitz, J. J. et al. Synaptotagmin-1 is a Ca2+ sensor for somatodendritic dopamine release. Cell Rep. 42, 111915 (2023).

    CAS 

    Google Scholar
     

  • German, P. W. & Fields, H. L. Rat nucleus accumbens neurons persistently encode locations associated with morphine reward. J. Neurophysiol. 97, 2094–2106 (2007).


    Google Scholar
     

  • Tsutsui-Kimura, I. et al. Distinct temporal difference error signals in dopamine axons in three regions of the striatum in a decision-making task. eLife 9, e62390 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Berridge, C. W., Stratford, T. L., Foote, S. L. & Kelley, A. E. Distribution of dopamine β-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens. Synapse 27, 230–241 (1997).

    CAS 

    Google Scholar
     

  • Schroeter, S. et al. Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J. Comp. Neurol. 420, 211–232 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • Antonini, A. et al. Effect of levodopa–carbidopa intestinal gel on dyskinesia in advanced Parkinson’s disease patients. Mov. Disord. 31, 530–537 (2016).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Flagel, S. B. et al. A selective role for dopamine in stimulus-reward learning. Nature 469, 53–57 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • Dolan, R. J. & Dayan, P. Goals and habits in the brain. Neuron 80, 312–325 (2013).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Wang, J. X. et al. Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci. 21, 860–868 (2018).

    CAS 

    Google Scholar
     

  • Wang, A. Y., Miura, K. & Uchida, N. The dorsomedial striatum encodes net expected return, critical for energizing performance vigor. Nat. Neurosci. 16, 639–647 (2013).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Dudman, J. T. & Krakauer, J. W. The basal ganglia: from motor commands to the control of vigor. Curr. Opin. Neurobiol. 37, 158–166 (2016).

    CAS 

    Google Scholar
     

  • Seiler, J. L. et al. Dopamine signaling in the dorsomedial striatum promotes compulsive behavior. Curr. Biol. 32, 1175–1188.e5 (2022).

    CAS 
    PubMed Central 

    Google Scholar
     

  • van Elzelingen, W. et al. Striatal dopamine signals are region specific and temporally stable across action-sequence habit formation. Curr. Biol. 32, 1163–1174.e6 (2022).

    PubMed Central 

    Google Scholar
     

  • Wyvell, C. L. & Berridge, K. C. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward ‘wanting’ without enhanced ‘liking’ or response reinforcement. J. Neurosci. 20, 8122–8130 (2000).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Cagniard, B. et al. Dopamine scales performance in the absence of new learning. Neuron 51, 541–547 (2006).

    CAS 

    Google Scholar
     

  • Yin, H. H., Zhuang, X. & Balleine, B. W. Instrumental learning in hyperdopaminergic mice. Neurobiol. Learn. Mem. 85, 283–288 (2006).

    CAS 

    Google Scholar
     

  • Jain, S. et al. Adaptor protein-3 produces synaptic vesicles that release phasic dopamine. Proc. Natl Acad. Sci. USA 120, e2309843120 (2023).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Kaeser, P. S. et al. RIM1α and RIM1β are synthesized from distinct promoters of the RIM1 gene to mediate differential but overlapping synaptic functions. J. Neurosci. 28, 13435–13447 (2008).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Kaeser, P. S. et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144, 282–295 (2011).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Zhou, Q. et al. Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis. Nature 525, 62–67 (2015).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Backman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus. Genesis 44, 383–390 (2006).

    CAS 

    Google Scholar
     

  • Allen Mouse Brain Atlas [mouse, P56, coronal 2011] (Allen Institute for Brain Science, 2004); https://atlas.brain-map.org.

  • Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Rudolph, S. et al. Cerebellum-specific deletion of the GABAA receptor δ subunit leads to sex-specific disruption of behavior. Cell Rep. 33, 108338 (2020).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Newell, A., Yang, K. & Deng, J. Stacked hourglass networks for human pose estimation. In Computer Vision—ECCV 2016. Lecture Notes in Computer Science vol. 9912 (eds Leibe, B., Matas, J., Sebe, N. & Welling, M.) 484–499 (Springer, 2016).

  • Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).

    CAS 

    Google Scholar
     

  • Nath, T. et al. Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nat. Protoc. 14, 2152–2176 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Hutchison, M. A. et al. Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior. Mol. Psychiatry 23, 1213–1225 (2018).

    CAS 

    Google Scholar
     

  • Uchida, N. & Mainen, Z. F. Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6, 1224–1229 (2003).

    CAS 

    Google Scholar
     

  • Menegas, W. et al. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4, e10032 (2015).

    PubMed Central 

    Google Scholar
     

  • Nguyen, N. D. et al. Cortical reactivations predict future sensory responses. Nature 625, 110–118 (2024).

    ADS 
    CAS 

    Google Scholar
     

  • Cai, X. & Kaeser, P. Data table for Cai et al., 2024. Zenodo https://doi.org/10.5281/zenodo.13329864 (2024).

  • Brimblecombe, K. R., Gracie, C. J., Platt, N. J. & Cragg, S. J. Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains. J. Physiol. 593, 929–946 (2015).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Tedford, H. W. & Zamponi, G. W. Direct G protein modulation of Cav2 calcium channels. Pharmacol. Rev. 58, 837–862 (2006).

    CAS 

    Google Scholar
     

  • Pereira, D. B. et al. Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nat. Neurosci. 19, 578–586 (2016).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Delignat-Lavaud, B. et al. Synaptotagmin-1-dependent phasic axonal dopamine release is dispensable for basic motor behaviors in mice. Nat. Commun. 14, 4120 (2023).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Kaeser, P. S. & Regehr, W. G. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76, 333–363 (2014).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments