Friday, September 5, 2025
No menu items!
HomeNatureDNA2 enables growth by restricting recombination-restarted replication

DNA2 enables growth by restricting recombination-restarted replication

  • Budd, M. E. & Campbell, J. L. A yeast gene required for DNA replication encodes a protein with homology to DNA helicases. Proc. Natl Acad. Sci. USA 92, 7642–7646 (1995).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. et al. The intra-S phase checkpoint targets Dna2 to prevent stalled replication forks from reversing. Cell 149, 1221–1232 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, W. et al. Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity. EMBO J. 32, 1425–1439 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karanja, K. K., Lee, E. H., Hendrickson, E. A. & Campbell, J. L. Preventing over-resection by DNA2 helicase/nuclease suppresses repair defects in Fanconi anemia cells. Cell Cycle 13, 1540–1550 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaheen, R. et al. Genomic analysis of primordial dwarfism reveals novel disease genes. Genome Res. 24, 291–299 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tarnauskaitė, Ž. et al. Biallelic variants in DNA2 cause microcephalic primordial dwarfism. Hum. Mutat. 40, 1063–1070 (2019).

    PubMed 

    Google Scholar
     

  • Di Lazzaro Filho, R. et al. Biallelic variants in DNA2 cause poikiloderma with congenital cataracts and severe growth failure reminiscent of Rothmund-Thomson syndrome. J. Med. Genet. 60, 1127–1132 (2023).

    PubMed 

    Google Scholar
     

  • Peng, G. et al. Human nuclease/helicase DNA2 alleviates replication stress by promoting DNA end resection. Cancer Res. 72, 2802–2813 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strauss, C. et al. The DNA2 nuclease/helicase is an estrogen-dependent gene mutated in breast and ovarian cancers. Oncotarget 5, 9396–9409 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Y. et al. Characteristic analysis of featured genes associated with stemness indices in colorectal cancer. Front. Mol. Biosci. 7, 563922 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thongon, N. et al. Targeting DNA2 overcomes metabolic reprogramming in multiple myeloma. Nat. Commun. 15, 1203 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hudson, J. J. R. & Rass, U. DNA2 in chromosome stability and cell survival—is it all about replication forks? Int. J. Mol. Sci. 22, 3984 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burgers, P. M. It’s all about flaps: Dna2 and checkpoint activation. Cell Cycle 10, 2417–2418 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bae, S. H., Bae, K. H., Kim, J. A. & Seo, Y. S. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412, 456–461 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Budd, M. E., Antoshechkin, I. A., Reis, C., Wold, B. J. & Campbell, J. L. Inviability of a DNA2 deletion mutant is due to the DNA damage checkpoint. Cell Cycle 10, 1690–1698 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duxin, J. P. et al. Okazaki fragment processing-independent role for human Dna2 enzyme during DNA replication. J. Biol. Chem. 287, 21980–21991 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Appanah, R., Jones, D., Falquet, B. & Rass, U. Limiting homologous recombination at stalled replication forks is essential for cell viability: DNA2 to the rescue. Curr. Genet. 66, 1085–1092 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thangavel, S. et al. DNA2 drives processing and restart of reversed replication forks in human cells. J. Cell Biol. 208, 545–562 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ölmezer, G. et al. Replication intermediates that escape Dna2 activity are processed by Holliday junction resolvase Yen1. Nat. Commun. 7, 13157 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossi, S. E., Foiani, M. & Giannattasio, M. Dna2 processes behind the fork long ssDNA flaps generated by Pif1 and replication-dependent strand displacement. Nat. Commun. 9, 4830 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Falquet, B. et al. Disease-associated DNA2 nuclease-helicase protects cells from lethal chromosome under-replication. Nucleic Acids Res. 48, 7265–7278 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. FANCD2 and RAD51 recombinase directly inhibit DNA2 nuclease at stalled replication forks and FANCD2 acts as a novel RAD51 mediator in strand exchange to promote genome stability. Nucleic Acids Res. 51, 9144–9165 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529–542 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Higgs, M. R. et al. BOD1L is required to suppress deleterious resection of stressed replication forks. Mol. Cell 59, 462–477 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Ahn, J. S., Osman, F. & Whitby, M. C. Replication fork blockage by RTS1 at an ectopic site promotes recombination in fission yeast. EMBO J. 24, 2011–2023 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lambert, S., Watson, A., Sheedy, D. M., Martin, B. & Carr, A. M. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121, 689–702 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • Petermann, E., Orta, M. L., Issaeva, N., Schultz, N. & Helleday, T. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol. Cell 37, 492–502 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ait Saada, A., Lambert, S. A. E. & Carr, A. M. Preserving replication fork integrity and competence via the homologous recombination pathway. DNA Repair 71, 135–147 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teixeira-Silva, A. et al. The end-joining factor Ku acts in the end-resection of double strand break-free arrested replication forks. Nat. Commun. 8, 1982 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carr, A. M. & Lambert, S. Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination. J. Mol. Biol. 425, 4733–4744 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Lydeard, J. R., Jain, S., Yamaguchi, M. & Haber, J. E. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448, 820–823 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Costantino, L. et al. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343, 88–91 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Y. et al. DNA nicks in both leading and lagging strand templates can trigger break-induced replication. Mol. Cell 85, 91–106 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tanaka, H., Ryu, G. H., Seo, Y. S. & MacNeill, S. A. Genetics of lagging strand DNA synthesis and maturation in fission yeast: suppression analysis links the Dna2-Cdc24 complex to DNA polymerase delta. Nucleic Acids Res. 32, 6367–6377 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, X. & Malkova, A. Break-induced replication mechanisms in yeast and mammals. Curr. Opin. Genet. Dev. 71, 163–170 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyabe, I. et al. Polymerase delta replicates both strands after homologous recombination-dependent fork restart. Nat. Struct. Mol. Biol. 22, 932–938 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pinter, S. F., Aubert, S. D. & Zakian, V. A. The Schizosaccharomyces pombe Pfh1p DNA helicase is essential for the maintenance of nuclear and mitochondrial DNA. Mol. Cell. Biol. 28, 6594–6608 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Z. et al. hDNA2 nuclease/helicase promotes centromeric DNA replication and genome stability. EMBO J. 37, e96729 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Natsume, T., Kiyomitsu, T., Saga, Y. & Kanemaki, M. T. Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 15, 210–218 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Chung, H. K. et al. Tunable and reversible drug control of protein production via a self-excising degron. Nat. Chem. Biol. 11, 713–720 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegarat, N. et al. Cyclin A triggers mitosis either via the Greatwall kinase pathway or cyclin B. EMBO J. 39, e104419 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vaitsiankova, A. et al. PARP inhibition impedes the maturation of nascent DNA strands during DNA replication. Nat. Struct. Mol. Biol. 29, 329–338 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanzlikova, H. et al. The importance of poly(ADP-ribose) polymerase as a sensor of unligated Okazaki fragments during DNA replication. Mol. Cell 71, 319–331 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ward, I. M. & Chen, J. Histone H2AX is phosphorylated in an ATR-dependent manner in response to replicational stress. J. Biol. Chem. 276, 47759–47762 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Fernandez-Casanas, M. & Chan, K. L. The unresolved problem of DNA bridging. Genes 9, 623 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mocanu, C. et al. DNA replication is highly resilient and persistent under the challenge of mild replication stress. Cell Rep. 39, 110701 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W., Krishnamoorthy, A., Zhao, R. & Cortez, D. Two replication fork remodeling pathways generate nuclease substrates for distinct fork protection factors. Sci. Adv. 6, eabc3598 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, F. et al. Identification of specific inhibitors of human RAD51 recombinase using high-throughput screening. ACS Chem. Biol. 6, 628–635 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feringa, F. M. et al. Persistent repair intermediates induce senescence. Nat. Commun. 9, 3923 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feringa, F. M. et al. Hypersensitivity to DNA damage in antephase as a safeguard for genome stability. Nat. Commun. 7, 12618 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lossaint, G. et al. Reciprocal regulation of p21 and Chk1 controls the cyclin D1-RB pathway to mediate senescence onset after G2 arrest. J. Cell Sci. 135, jcs259114 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Müllers, E., Silva Cascales, H., Jaiswal, H., Saurin, A. T. & Lindqvist, A. Nuclear translocation of cyclin B1 marks the restriction point for terminal cell cycle exit in G2 phase. Cell Cycle 13, 2733–2743 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fousek-Schuller, V. J. & Borgstahl, G. E. O. The intriguing mystery of RPA phosphorylation in DNA double-strand break repair. Genes 15, 167 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minocherhomji, S. et al. Replication stress activates DNA repair synthesis in mitosis. Nature 528, 286–290 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pinto, C., Kasaciunaite, K., Seidel, R. & Cejka, P. Human DNA2 possesses a cryptic DNA unwinding activity that functionally integrates with BLM or WRN helicases. eLife 5, e18574 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Formosa, T. & Nittis, T. Dna2 mutants reveal interactions with Dna polymerase alpha and Ctf4, a Pol alpha accessory factor, and show that full Dna2 helicase activity is not essential for growth. Genetics 151, 1459–1470 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • d’Adda di Fagagna, F. Living on a break: cellular senescence as a DNA-damage response. Nat. Rev. Cancer 8, 512–522 (2008).

    PubMed 

    Google Scholar
     

  • Macheret, M. & Halazonetis, T. D. DNA replication stress as a hallmark of cancer. Annu. Rev. Pathol. 10, 425–448 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S. et al. Inhibition of DNA2 nuclease as a therapeutic strategy targeting replication stress in cancer cells. Oncogenesis 6, e319 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, W. et al. A selective small molecule DNA2 inhibitor for sensitization of human cancer cells to chemotherapy. eBioMedicine 6, 73–86 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Folly-Kossi, H., Graves, J. D., Garan, L. A. W., Lin, F. T. & Lin, W. C. DNA2 nuclease inhibition confers synthetic lethality in cancers with mutant p53 and synergizes with PARP inhibitors. Cancer Res. Commun. 3, 2096–2112 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klingseisen, A. & Jackson, A. P. Mechanisms and pathways of growth failure in primordial dwarfism. Genes Dev. 25, 2011–2024 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martins, D. J., Di Lazzaro Filho, R., Bertola, D. R. & Hoch, N. C. Rothmund-Thomson syndrome, a disorder far from solved. Front. Aging 4, 1296409 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nielsen-Dandoroff, E., Ruegg, M. S. G. & Bicknell, L. S. The expanding genetic and clinical landscape associated with Meier-Gorlin syndrome. Eur. J. Hum. Genet. 31, 859–868 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • Watson, A. T., Garcia, V., Bone, N., Carr, A. M. & Armstrong, J. Gene tagging and gene replacement using recombinase-mediated cassette exchange in Schizosaccharomyces pombe. Gene 407, 63–74 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Osman, F. & Whitby, M. C. in DNA Replication: Methods and Protocols (eds Vengrova, S. & Dalgaard, J. Z.) 535–552 (Humana, 2009).


    Google Scholar
     

  • Keszthelyi, A., Daigaku, Y., Ptasinska, K., Miyabe, I. & Carr, A. M. Mapping ribonucleotides in genomic DNA and exploring replication dynamics by polymerase usage sequencing (Pu-seq). Nat. Protoc. 10, 1786–1801 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Naiman, K. et al. Replication dynamics of recombination-dependent replication forks. Nat. Commun. 12, 923 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kowarz, E., Loscher, D. & Marschalek, R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments