Thursday, February 6, 2025
No menu items!
HomeNatureDirectly imaging the cooling flow in the Phoenix cluster

Directly imaging the cooling flow in the Phoenix cluster

  • Fabian, A. C., Nulsen, P. E. J. & Canizares, C. R. Cooling flows in clusters of galaxies. Nature 310, 733–740 (1984).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fabian, A. C. Cooling flows in clusters of galaxies. Annu. Rev. Astron. Astrophys. 32, 277–318 (1994).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • McNamara, B. R. & O’Connell, R. W. Star formation in cooling flows in clusters of galaxies. Astron. J. 98, 2018–2043 (1989).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Allen, S. W. Starbursts in cooling flows: blue continua and emission-line nebulae in central cluster galaxies. Mon. Not. R. Astron. Soc. 276, 947–960 (1995).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hicks, A. K. & Mushotzky, R. Star formation rates in cooling flow clusters: a UV pilot study with archival XMM-Newton optical monitor data. Astrophys. J. Lett. 635, L9–L12 (2005).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McDonald, M., Gaspari, M., McNamara, B. R. & Tremblay, G. R. Revisiting the cooling flow problem in galaxies, groups, and clusters of galaxies. Astrophys. J. 858, 45 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Canizares, C. R., Markert, T. H. & Donahue, M. E. in Cooling Flows in Clusters and Galaxies (ed. Fabian, A. C.) 63 (1988).

  • David, L. P. et al. A high-resolution study of the Hydra A cluster with Chandra: comparison of the core mass distribution with theoretical predictions and evidence for feedback in the cooling flow. Astrophys. J. 557, 546–559 (2001).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Peterson, J. R. et al. High-resolution X-ray spectroscopic constraints on cooling-flow models for clusters of galaxies. Astrophys. J. 590, 207–224 (2003).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McNamara, B. R. & Nulsen, P. E. J. Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117–175 (2007).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hlavacek-Larrondo, J. et al. X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out to z = 1.2. Astrophys. J. 805, 35 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Gaspari, M., Melioli, C., Brighenti, F. & D’Ercole, A. The dance of heating and cooling in galaxy clusters: three-dimensional simulations of self-regulated active galactic nuclei outflows. Mon. Not. R. Astron. Soc. 411, 349–372 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prasad, D., Sharma, P. & Babul, A. Cool core cycles: cold gas and AGN jet feedback in cluster cores. Astrophys. J. 811, 108 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Li, Y., Ruszkowski, M. & Bryan, G. L. AGN heating in simulated cool-core clusters. Astrophys. J. 847, 106 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Yang, H. Y. K., Gaspari, M. & Marlow, C. The impact of radio AGN bubble composition on the dynamics and thermal balance of the intracluster medium. Astrophys. J. 871, 6 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McDonald, M. et al. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies. Nature 488, 349–352 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • McNamara, B. R. et al. A mechanism for stimulating AGN feedback by lifting gas in massive galaxies. Astrophys. J. 830, 79 (2016).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Revaz, Y., Combes, F. & Salomé, P. Formation of cold filaments in cooling flow clusters. Astron. Astrophys. 477, L33–L36 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McDonald, M. et al. Anatomy of a cooling flow: the feedback response to pure cooling in the core of the Phoenix cluster. Astrophys. J. 885, 63 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Russell, H. R. et al. Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster. Astrophys. J. 836, 130 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Gaspari, M. et al. Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. Astrophys. J. 854, 167 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • McDonald, M. et al. Deep Chandra, HST-COS, and Megacam observations of the Phoenix cluster: extreme star formation and AGN feedback on hundred kiloparsec scales. Astrophys. J. 811, 111 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pinto, C. et al. AGN feedback in the Phoenix cluster. Mon. Not. R. Astron. Soc. 480, 4113–4123 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Oegerle, W. R. et al. FUSE observations of cooling-flow gas in the galaxy clusters A1795 and A2597. Astrophys. J. 560, 187–193 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bregman, J. N., Fabian, A. C., Miller, E. D. & Irwin, J. A. On VI observations of galaxy clusters: evidence for modest cooling flows. Astrophys. J. 642, 746–751 (2006).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Fabian, A. C. et al. Hidden cooling flows in clusters of galaxies. Mon. Not. R. Astron. Soc. 515, 3336–3345 (2022).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Sparks, W. B. et al. Hundred thousand degree gas in the Virgo cluster of galaxies. Astrophys. J. Lett. 750, L5 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Anderson, M. E. & Sunyaev, R. Searching for FUV line emission from 107 K gas in massive elliptical galaxies and galaxy clusters as a tracer of turbulent velocities. Mon. Not. R. Astron. Soc. 459, 2806–2821 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Canning, R. E. A. et al. Detection of optical coronal emission from 106-K gas in the core of the Centaurus cluster. Mon. Not. R. Astron. Soc. 411, 411–421 (2011).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Chatzikos, M. et al. Implications of coronal line emission in NGC 4696*. Mon. Not. R. Astron. Soc. 446, 1234–1244 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McDonald, M. et al. The state of the warm and cold gas in the extreme starburst at the core of the Phoenix galaxy cluster (SPT-CLJ2344-4243). Astrophys. J. 784, 18 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pope, E. C. D., Babul, A., Pavlovski, G., Bower, R. G. & Dotter, A. Mass transport by buoyant bubbles in galaxy clusters. Mon. Not. R. Astron. Soc. 406, 2023–2037 (2010).

    ADS 

    Google Scholar
     

  • Gaspari, M., Ruszkowski, M. & Sharma, P. Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wittor, D. & Gaspari, M. Dissecting the turbulent weather driven by mechanical AGN feedback. Mon. Not. R. Astron. Soc. 498, 4983–5002 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ferland, G. J. et al. CLOUDY 90: numerical simulation of plasmas and their spectra. Publ. Astron. Soc. Pac. 110, 761–778 (1998).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Chatzikos, M. et al. The 2023 release of Cloudy. Rev. Mex. Astron. Astrofis. 59, 327–343 (2023).

    ADS 
    MATH 

    Google Scholar
     

  • Saccheo, I. et al. The WISSH quasars project. XI. The mean spectral energy distribution and bolometric corrections of the most luminous quasars. Astron. Astrophys. 671, A34 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Indriolo, N., Geballe, T. R., Oka, T. & McCall, B. J. H+3 in diffuse interstellar clouds: a tracer for the cosmic-ray ionization rate. Astrophys. J. 671, 1736–1747 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gaspari, M. Shaping the X-ray spectrum of galaxy clusters with AGN feedback and turbulence. Mon. Not. R. Astron. Soc. 451, L60–L64 (2015).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Jenkins, E. B. A unified representation of gas-phase element depletions in the interstellar medium. Astrophys. J. 700, 1299–1348 (2009).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Gaspari, M., Temi, P. & Brighenti, F. Raining on black holes and massive galaxies: the top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 466, 677–704 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prasad, D., Sharma, P., Babul, A., Voit, G. M. & O’Shea, B. W. Cool-core cycles and Phoenix. Mon. Not. R. Astron. Soc. 495, 594–599 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fabian, A. C. et al. The relationship between the optical Hα filaments and the X-ray emission in the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 344, L48–L52 (2003).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Gendron-Marsolais, M. et al. Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety. Mon. Not. R. Astron. Soc. 479, L28–L33 (2018).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • McNamara, B. R. & Nulsen, P. E. J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14, 055023 (2012).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Fabian, A. C. et al. Hidden cooling flows in clusters of galaxies II: a wider sample. Mon. Not. R. Astron. Soc. 521, 1794–1807 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Spilker, J. S. et al. Spatial variations in aromatic hydrocarbon emission in a dust-rich galaxy. Nature 618, 708–711 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. SIAM Rev. 59, 65–98 (2017).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Smith, J. D. T. et al. The mid-infrared spectrum of star-forming galaxies: global properties of polycyclic aromatic hydrocarbon emission. Astrophys. J. 656, 770–791 (2007).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Fitzpatrick, E. L. & Massa, D. An analysis of the shapes of ultraviolet extinction curves. I. The 2,175 angstrom bump. Astrophys. J. 307, 286 (1986).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Donnan, F. R. et al. The obscured nucleus and shocked environment of VV 114E revealed by JWST/MIRI spectroscopy. Mon. Not. R. Astron. Soc. 519, 3691–3705 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Labiano, A. et al. Wavelength calibration and resolving power of the JWST MIRI medium resolution spectrometer. Astron. Astrophys. 656, A57 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Tsuchikawa, T. et al. A systematic study of silicate absorption features in heavily obscured AGNs observed by Spitzer/IRS. Astron. Astrophys. 651, A117 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Veilleux, S. et al. Spitzer Quasar and Ulirg Evolution Study (QUEST). IV. Comparison of 1 Jy ultraluminous infrared galaxies with Palomar-Green quasars. Astrophys. J. Supp. 182, 628–666 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Markwardt, C. B. Non-linear least-squares fitting in IDL with MPFIT. in Astronomical Data Analysis Software and Systems XVIII (eds Bohlender, D. A. et al.) 251 (2009).

  • Mogensen, P. K. & Riseth, A. N. Optim: a mathematical optimization package for Julia. J. Open Source Softw. 3, 615 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Del Zanna, G., Dere, K. P., Young, P. R. & Landi, E. CHIANTI—an atomic database for emission lines. XVI. version 10, further extensions. Astrophys. J. 909, 38 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Fielding, D. B. & Bryan, G. L. The structure of multiphase galactic winds. Astrophys. J. 924, 82 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Meena, B. et al. Investigating the narrow-line region dynamics in nearby active galaxies. Astrophys. J. 943, 98 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments