Smits, O. R., Düllmann, C. E., Indelicato, P., Nazarewicz, W. & Schwerdtfeger, P. The quest for superheavy elements and the limit of the periodic table. Nat. Rev. Phys. 2, 515–531 (2020).
The Chemistry of the Actinide and Transactinide Elements Vol. 1–5 (Springer, 2006).
Gates, J. M. & Pore, J. L. Studies of heavy and super heavy elements with FIONA: the broad impact of mass-number identifications. Eur. Phys. J. A 58, 196 (2022).
Miederer, M., Scheinberg, D. A. & McDevitt, M. R. Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev. 60, 1371–1382 (2008).
Deblonde, G. J.-P., Zavarin, M. & Kersting, A. B. The coordination properties and ionic radius of actinium: a 120-year-old enigma. Coord. Chem. Rev. 446, 214130 (2021).
Wacker, J. N. et al. Actinium chelation and crystallization in a macromolecular scaffold. Nat. Commun. 15, 5741 (2024).
Silva, R. J. in The Chemistry of the Actinide and Transactinide Elements (eds Morss, L. R., Edelstein, N. M. & Fuger, J.) 1621–1651 (Springer, 2006).
Sato, T. K. et al. First ionization potentials of Fm, Md, No, and Lr: verification of filling-up of 5f electrons and confirmation of the actinide series. J. Am. Chem. Soc. 140, 14609–14613 (2018).
Laatiaoui, M. et al. Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495–498 (2016).
Schädel, M. Chemistry of the superheavy elements. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 20140191 (2015).
Gregorich, K. E. Simulation of recoil trajectories in gas-filled magnetic separators. Nucl. Instrum. Methods Phys. Res. A 711, 47–59 (2013).
Savard, G. Large radio-frequency gas catchers and the production of radioactive nuclear beams. J. Phys. Conf. Ser. 312, 052004 (2011).
Cooper, K. et al. Extraction of thermalized projectile fragments from a large volume gas cell. Nucl. Instrum. Methods Phys. Res. A 763, 543–546 (2014).
Sumithrarachchi, C. S. et al. Beam thermalization in a large gas catcher. Nucl. Instrum. Methods Phys. Res. B 463, 305–309 (2020).
Anderson, J. B., Andres, R. P. & Fenn, J. B. in Advances in Chemical Physics: Molecular Beams Vol. 10 (ed. Ross, J.) 275–317 (Interscience, 1966).
Hillenkamp, M., Keinan, S. & Even, U. Condensation limited cooling in supersonic expansions. J. Chem. Phys. 118, 8699–8705 (2003).
Northby, J. A. Experimental studies of helium droplets. J. Chem. Phys. 115, 10065–10077 (2001).
Searcy, J. Q. & Fenn, J. B. Clustering of water on hydrated protons in a supersonic free jet expansion. J. Chem. Phys. 61, 5282–5288 (1974).
Herfurth, F. et al. A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instrum. Methods Phys. Res. A 469, 254–275 (2001).
Lunney, M. D. & Moore, R. B. Cooling of mass-separated beams using a radiofrequency quadrupole ion guide. Int. J. Mass Spectrom. 190–191, 153–160 (1999).
Mansell, S. M., Farnaby, J. H., Germeroth, A. I. & Arnold, P. L. Thermally stable uranium dinitrogen complex with siloxide supporting ligands. Organometallics 32, 4212–4218 (2013).
Schädel, M. et al. Chemical properties of element 106 (seaborgium). Nature 388, 55–57 (1997).
Eichler, R. et al. Chemical characterization of bohrium (element 107). Nature 407, 63–65 (2000).
Düllmann, Ch. E. et al. Chemical investigation of hassium (element 108). Nature 418, 859–862 (2002).
Eichler, R. et al. Chemical characterization of element 112. Nature 447, 72–75 (2007).
Even, J. et al. Synthesis and detection of a seaborgium carbonyl complex. Science 345, 1491–1493 (2014).
Eichler, R. et al. Indication for a volatile element 114. Radiochim. Acta 98, 133–139 (2010).
Yakushev, A. et al. Superheavy element flerovium (element 114) is a volatile metal. Inorg. Chem. 53, 1624–1629 (2014).
Yakushev, A. et al. On the adsorption and reactivity of element 114, flerovium. Front. Chem. 10, 976635 (2022).
Yakushev, A. et al. Manifestation of relativistic effects in the chemical properties of nihonium and moscovium revealed by gas chromatography studies. Front. Chem. 12, 1474820 (2024).
Rutkowski, P. X. et al. Hydration of gas-phase ytterbium ion complexes studied by experiment and theory. Theor. Chem. Acc. 129, 575–592 (2011).
Cheng, P., Koyanagi, G. K. & Bohme, D. K. Gas-phase reactions of atomic lanthanide cations with D2O: room-temperature kinetics and periodicity in reactivity. ChemPhysChem 7, 1813–1819 (2006).
Cheng, P., Koyanagi, G. K. & Bohme, D. K. Heavy water reactions with atomic transition-metal and main-group cations: gas phase room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 111, 8561–8573 (2007).
Gates, J. M. et al. First direct measurements of superheavy-element mass numbers. Phys. Rev. Lett. 121, 222501 (2018).
Leitner, D. et al. Next generation ECR ion sources: first results of the superconducting 28 GHz ECRIS—VENUS. Nucl. Instrum. Methods Phys. Res. B 235, 486 (2005).
Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1989).
Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).
Kendall, R. A., Dunning, T. H. Jr & Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992).
Cao, X. & Dolg, M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struct. THEOCHEM 673, 203–209 (2004).
Cao, X., Dolg, M. & Stool, M. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 118, 487–496 (2003).
Bartlett, R. J. & Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).
Jong, W. A., de Harrison, R. J. & Dixon, D. A. Parallel Douglas–Kroll energy and gradients in NWChem: estimating scalar relativistic effects using Douglas–Kroll contracted basis sets. J. Chem. Phys. 114, 48–53 (2001).
Feng, R. & Peterson, K. A. Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr. J. Chem. Phys. 147, 084108 (2017).
Wolf, A., Reiher, M. & Hess, B. A. The generalized Douglas–Kroll transformation. J. Chem. Phys. 117, 9215–9226 (2002).
Knowles, P. J., Hampel, C. & Werner, H.-J. Coupled cluster theory for high spin, open shell reference wave functions. J. Chem. Phys. 99, 5219–5228 (1993).
Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).
Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 40, 2234–2241 (2019).
Glendening, E. D. et al. NBO 7.0. Theoretical Chemistry Institute, Univ. Wisconsin (2018).
Frisch, M. J. et al. Gaussian 16, revision A.03. Gaussian, Inc. (2016).
Werner, H.-J. et al. The Molpro quantum chemistry package. J. Chem. Phys. 152, 144107 (2020).
Werner, H.-J. et al. MOLPRO, version 2021, a package of ab initio programs. https://www.molpro.net (2021).
Pore, J. Nobelium and actinium coordination chemistry study with FIONA. Zenodo https://zenodo.org/records/14277708 (2024).