Monday, August 4, 2025
No menu items!
HomeNatureDirect identification of Ac and No molecules with an atom-at-a-time technique

Direct identification of Ac and No molecules with an atom-at-a-time technique

  • Smits, O. R., Düllmann, C. E., Indelicato, P., Nazarewicz, W. & Schwerdtfeger, P. The quest for superheavy elements and the limit of the periodic table. Nat. Rev. Phys. 2, 515–531 (2020).


    Google Scholar
     

  • The Chemistry of the Actinide and Transactinide Elements Vol. 1–5 (Springer, 2006).

  • Gates, J. M. & Pore, J. L. Studies of heavy and super heavy elements with FIONA: the broad impact of mass-number identifications. Eur. Phys. J. A 58, 196 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Miederer, M., Scheinberg, D. A. & McDevitt, M. R. Realizing the potential of the actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev. 60, 1371–1382 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deblonde, G. J.-P., Zavarin, M. & Kersting, A. B. The coordination properties and ionic radius of actinium: a 120-year-old enigma. Coord. Chem. Rev. 446, 214130 (2021).

    CAS 

    Google Scholar
     

  • Wacker, J. N. et al. Actinium chelation and crystallization in a macromolecular scaffold. Nat. Commun. 15, 5741 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silva, R. J. in The Chemistry of the Actinide and Transactinide Elements (eds Morss, L. R., Edelstein, N. M. & Fuger, J.) 1621–1651 (Springer, 2006).

  • Sato, T. K. et al. First ionization potentials of Fm, Md, No, and Lr: verification of filling-up of 5f electrons and confirmation of the actinide series. J. Am. Chem. Soc. 140, 14609–14613 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Laatiaoui, M. et al. Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495–498 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • Schädel, M. Chemistry of the superheavy elements. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 20140191 (2015).

    ADS 

    Google Scholar
     

  • Gregorich, K. E. Simulation of recoil trajectories in gas-filled magnetic separators. Nucl. Instrum. Methods Phys. Res. A 711, 47–59 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • Savard, G. Large radio-frequency gas catchers and the production of radioactive nuclear beams. J. Phys. Conf. Ser. 312, 052004 (2011).


    Google Scholar
     

  • Cooper, K. et al. Extraction of thermalized projectile fragments from a large volume gas cell. Nucl. Instrum. Methods Phys. Res. A 763, 543–546 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Sumithrarachchi, C. S. et al. Beam thermalization in a large gas catcher. Nucl. Instrum. Methods Phys. Res. B 463, 305–309 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Anderson, J. B., Andres, R. P. & Fenn, J. B. in Advances in Chemical Physics: Molecular Beams Vol. 10 (ed. Ross, J.) 275–317 (Interscience, 1966).

  • Hillenkamp, M., Keinan, S. & Even, U. Condensation limited cooling in supersonic expansions. J. Chem. Phys. 118, 8699–8705 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Northby, J. A. Experimental studies of helium droplets. J. Chem. Phys. 115, 10065–10077 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Searcy, J. Q. & Fenn, J. B. Clustering of water on hydrated protons in a supersonic free jet expansion. J. Chem. Phys. 61, 5282–5288 (1974).

    ADS 
    CAS 

    Google Scholar
     

  • Herfurth, F. et al. A linear radiofrequency ion trap for accumulation, bunching, and emittance improvement of radioactive ion beams. Nucl. Instrum. Methods Phys. Res. A 469, 254–275 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • Lunney, M. D. & Moore, R. B. Cooling of mass-separated beams using a radiofrequency quadrupole ion guide. Int. J. Mass Spectrom. 190–191, 153–160 (1999).


    Google Scholar
     

  • Mansell, S. M., Farnaby, J. H., Germeroth, A. I. & Arnold, P. L. Thermally stable uranium dinitrogen complex with siloxide supporting ligands. Organometallics 32, 4212–4218 (2013).


    Google Scholar
     

  • Schädel, M. et al. Chemical properties of element 106 (seaborgium). Nature 388, 55–57 (1997).

    ADS 

    Google Scholar
     

  • Eichler, R. et al. Chemical characterization of bohrium (element 107). Nature 407, 63–65 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Düllmann, Ch. E. et al. Chemical investigation of hassium (element 108). Nature 418, 859–862 (2002).

    ADS 
    PubMed 

    Google Scholar
     

  • Eichler, R. et al. Chemical characterization of element 112. Nature 447, 72–75 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Even, J. et al. Synthesis and detection of a seaborgium carbonyl complex. Science 345, 1491–1493 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eichler, R. et al. Indication for a volatile element 114. Radiochim. Acta 98, 133–139 (2010).

    CAS 

    Google Scholar
     

  • Yakushev, A. et al. Superheavy element flerovium (element 114) is a volatile metal. Inorg. Chem. 53, 1624–1629 (2014).

    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Yakushev, A. et al. On the adsorption and reactivity of element 114, flerovium. Front. Chem. 10, 976635 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yakushev, A. et al. Manifestation of relativistic effects in the chemical properties of nihonium and moscovium revealed by gas chromatography studies. Front. Chem. 12, 1474820 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rutkowski, P. X. et al. Hydration of gas-phase ytterbium ion complexes studied by experiment and theory. Theor. Chem. Acc. 129, 575–592 (2011).

    CAS 

    Google Scholar
     

  • Cheng, P., Koyanagi, G. K. & Bohme, D. K. Gas-phase reactions of atomic lanthanide cations with D2O: room-temperature kinetics and periodicity in reactivity. ChemPhysChem 7, 1813–1819 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, P., Koyanagi, G. K. & Bohme, D. K. Heavy water reactions with atomic transition-metal and main-group cations: gas phase room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 111, 8561–8573 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • Gates, J. M. et al. First direct measurements of superheavy-element mass numbers. Phys. Rev. Lett. 121, 222501 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leitner, D. et al. Next generation ECR ion sources: first results of the superconducting 28 GHz ECRIS—VENUS. Nucl. Instrum. Methods Phys. Res. B 235, 486 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, 1989).

  • Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • Kendall, R. A., Dunning, T. H. Jr & Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • Cao, X. & Dolg, M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struct. THEOCHEM 673, 203–209 (2004).

    CAS 

    Google Scholar
     

  • Cao, X., Dolg, M. & Stool, M. Valence basis sets for relativistic energy-consistent small-core actinide pseudopotentials. J. Chem. Phys. 118, 487–496 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • Bartlett, R. J. & Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79, 291–352 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Jong, W. A., de Harrison, R. J. & Dixon, D. A. Parallel Douglas–Kroll energy and gradients in NWChem: estimating scalar relativistic effects using Douglas–Kroll contracted basis sets. J. Chem. Phys. 114, 48–53 (2001).

    ADS 

    Google Scholar
     

  • Feng, R. & Peterson, K. A. Correlation consistent basis sets for actinides. II. The atoms Ac and Np–Lr. J. Chem. Phys. 147, 084108 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • Wolf, A., Reiher, M. & Hess, B. A. The generalized Douglas–Kroll transformation. J. Chem. Phys. 117, 9215–9226 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • Knowles, P. J., Hampel, C. & Werner, H.-J. Coupled cluster theory for high spin, open shell reference wave functions. J. Chem. Phys. 99, 5219–5228 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Reed, A. E., Curtiss, L. A. & Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88, 899–926 (1988).

    CAS 

    Google Scholar
     

  • Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 7.0: new vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 40, 2234–2241 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Glendening, E. D. et al. NBO 7.0. Theoretical Chemistry Institute, Univ. Wisconsin (2018).

  • Frisch, M. J. et al. Gaussian 16, revision A.03. Gaussian, Inc. (2016).

  • Werner, H.-J. et al. The Molpro quantum chemistry package. J. Chem. Phys. 152, 144107 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Werner, H.-J. et al. MOLPRO, version 2021, a package of ab initio programs. https://www.molpro.net (2021).

  • Pore, J. Nobelium and actinium coordination chemistry study with FIONA. Zenodo https://zenodo.org/records/14277708 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments