Friday, May 30, 2025
No menu items!
HomeNatureDetection of X-ray emission from a bright long-period radio transient

Detection of X-ray emission from a bright long-period radio transient

  • Hurley-Walker, N. et al. A radio transient with unusually slow periodic emission. Nature 601, 526–530 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hurley-Walker, N. et al. A long-period radio transient active for three decades. Nature 619, 487–490 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Caleb, M. et al. An emission-state-switching radio transient with a 54-minute period. Nat. Astron. 8, 1159–1168 (2024).

    Article 

    Google Scholar
     

  • Dong, F. A. et al. The discovery of a nearby 421 transient with CHIME/FRB/Pulsar. Preprint at https://arxiv.org/abs/2407.07480 (2024).

  • de Ruiter, I. et al. Sporadic radio pulses from a white dwarf binary at the orbital period. Nat. Astron. https://doi.org/10.1038/s41550-025-02491-0 (2025).

  • Cooper, A. J. & Wadiasingh, Z. Beyond the rotational deathline: radio emission from ultra-long period magnetars. Mon. Not. R. Astron. Soc. 533, 2133–2155 (2024).

    Article 

    Google Scholar
     

  • Katz, J. I. GLEAM-X J162759.5 523504.3 as a white dwarf pulsar. Astrophys. Space Sci. 367, 108 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Qu, Y. & Zhang, B. Magnetic interaction in white dwarf binaries as mechanism for long-period radio transients. Astrophys. J. 981, 34 (2025).

  • Schwope, A. et al. X-ray properties of the white dwarf pulsar eRASSU J191213.9−41044. Astron. Astrophys. 674, L9 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Rea, N. et al. Constraining the nature of the 18 min periodic radio transient GLEAM-X J162759.5−523504.3 via multiwavelength observations and magneto-thermal simulations. Astrophys. J. 940, 72 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hotan, A. W. et al. Australian Square Kilometre Array Pathfinder: I. System description. Publ. Astron. Soc. Aust. 38, e009 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Murphy, T. et al. VAST: an ASKAP survey for variables and slow transients. Publ. Astron. Soc. Aust. 30, e006 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Murphy, T. et al. The ASKAP variables and slow transients (VAST) pilot survey. Publ. Astron. Soc. Aust. 38, e054 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Wang, Z. et al. The CRAFT coherent (CRACO) upgrade I: system description and results of the 110-ms radio transient pilot survey. Publ. Astron. Soc. Aust. 42, e005 (2025).

    Article 

    Google Scholar
     

  • Yao, J. M., Manchester, R. N. & Wang, N. A new electron-density model for estimation of pulsar and FRB distances. Astrophys. J. 835, 29 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Wenger, T. V., Balser, D. S., Anderson, L. D. & Bania, T. M. Kinematic distances: a Monte Carlo method. Astrophys. J. 856, 52 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Yuan, W., Zhang, C., Chen, Y. & Ling, Z. The Einstein Probe mission. In Handbook of X-ray and Gamma-ray Astrophysics (eds Bambi, C. & Sangangelo, A.) (Springer, 2022).

  • Chen, K. & Ruderman, M. Pulsar death lines and death valley. Astrophys. J. 402, 264 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, B., Harding, A. K. & Muslimov, A. G. Radio pulsar death line revisited: is PSR J2144−3933 anomalous? Astrophys. J. Lett. 531, L135–L138 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harding, A. K. & Muslimov, A. G. Pulsar pair cascades in a distorted magnetic dipole field. Astrophys. J. Lett. 726, L10 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Becker, W. & Truemper, J. The X-ray luminosity of rotation-powered neutron stars. Astron. Astrophys. 326, 682–691 (1997).

    ADS 

    Google Scholar
     

  • Saumon, D., Blouin, S. & Tremblay, P.-E. Current challenges in the physics of white dwarf stars. Phys. Rep. 988, 1–63 (2022).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Heise, J. X-ray emission from isolated hot white dwarfs. Space Sci. Rev. 40, 79–90 (1985).

    Article 
    ADS 

    Google Scholar
     

  • Beniamini, P. et al. Evidence for an abundant old population of Galactic ultra-long period magnetars and implications for fast radio bursts. Mon. Not. R. Astron. Soc. 520, 1872–1894 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Marsh, T. R. et al. A radio-pulsing white dwarf binary star. Nature 537, 374–377 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pelisoli, I. et al. A 5.3-min-period pulsing white dwarf in a binary detected from radio to X-rays. Nat. Astron. 7, 931–942 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Hurley-Walker, N. et al. A 2.9-hour periodic radio transient with an optical counterpart. Astrophys. J. Lett. 976, L21 (2024).

  • Bagnulo, S. & Landstreet, J. D. The isolated magnetic white dwarfs. The Messenger 186, 14–18 (2022).

    ADS 

    Google Scholar
     

  • Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Esposito, P., Rea, N. & Israel, G. L. Magnetars: A short review and some sparse considerations. In Timing Neutron Stars: Pulsations, Oscillations and Explosions, Astrophysics and Space Science Library Vol. 461 (eds Belloni, T. M. et al.) 97–142 (Springer, 2021).

  • Beniamini, P., Wadiasingh, Z. & Metzger, B. D. Periodicity in recurrent fast radio bursts and the origin of ultralong period magnetars. Mon. Not. R. Astron. Soc. 496, 3390–3401 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Camilo, F. et al. Transient pulsed radio emission from a magnetar. Nature 442, 892–895 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coti Zelati, F., Rea, N., Pons, J. A., Campana, S. & Esposito, P. Systematic study of magnetar outbursts. Mon. Not. R. Astron. Soc. 474, 961–1017 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Viganò, D. et al. Unifying the observational diversity of isolated neutron stars via magneto-thermal evolution models. Mon. Not. R. Astron. Soc. 434, 123–141 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Dehman, C., Viganò, D., Pons, J. A. & Rea, N. 3D code for magneto-thermal evolution in isolated neutron stars, MATINS: the magnetic field formalism. Mon. Not. R. Astron. Soc. 518, 1222–1242 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Caleb, M. et al. Discovery of a radio-emitting neutron star with an ultra-long spin period of 76 s. Nat. Astron. 6, 828–836 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lander, S. K., Gourgouliatos, K. N., Wadiasingh, Z. & Antonopoulou, D. Observing the Meissner effect in neutron stars. Preprint at https://arxiv.org/abs/2411.08020 (2024).

  • Guzman, J. et al. ASKAPsoft: ASKAP science data processor software. Astrophysics Source Code Library ascl:1912.003 (2019).

  • Purcell, C. R., Van Eck, C. L., West, J., Sun, X. H. & Gaensler, B. M. RM-Tools: rotation measure (RM) synthesis and Stokes QU-fitting. Astrophysics Source Code Library ascl:2005.003 (2020).

  • McConnell, D. et al. The Rapid ASKAP Continuum Survey I: design and first results. Publ. Astron. Soc. Aust. 37, e048 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hale, C. L. et al. The Rapid ASKAP Continuum Survey paper II: first Stokes I source catalogue data release. Publ. Astron. Soc. Aust. 38, e058 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Sault, R. J., Teuben, P. J. & Wright, M. C. H. A retrospective view of MIRIAD. In Astronomical Data Analysis Software and Systems IV, Astronomical Society of the Pacific Conference Series Vol. 77 (eds Shaw, R. A. et al.) 433–436 (1995).

  • Bailes, M. et al. The MeerKAT telescope as a pulsar facility: system verification and early science results from MeerTime. Publ. Astron. Soc. Aust. 37, e028 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Serylak, M. et al. The thousand-pulsar-array programme on MeerKAT IV: polarization properties of young, energetic pulsars. Mon. Not. R. Astron. Soc. 505, 4483–4495 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Heywood, I. oxkat: semi-automated imaging of MeerKAT observations. Astrophysics Source Code Library ascl:2009.003 (2020).

  • McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI, Astronomical Society of the Pacific Conference Series Vol. 376 (eds Shaw, R. A. et al.) 127–130 (2007).

  • Hugo, B. V., Perkins, S., Merry, B., Mauch, T. & Smirnov, O. M. Tricolour: An optimized SumThreshold flagger for MeerKAT. In Astronomical Data Analysis Software and Systems XXX, Astronomical Society of the Pacific Conference Series Vol. 532 (eds Ruiz, J. E. et al.) 541–544 (2022).

  • Kenyon, J. S., Smirnov, O. M., Grobler, T. L. & Perkins, S. J. CUBICAL—fast radio interferometric calibration suite exploiting complex optimization. Mon. Not. R. Astron. Soc. 478, 2399–2415 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Offringa, A. R. et al. WSCLEAN: an implementation of a fast, generic wide-field imager for radio astronomy. Mon. Not. R. Astron. Soc. 444, 606–619 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Collier, J. D., Frank, B., Sekhar, S. & Taylor, A. R. The IDIA PROCESSMEERKAT pipeline: fast CASA processing on a cloud-based HPC cluster. In 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science 4 (2021).

  • Deller, A. T. et al. DiFX-2: a more flexible, efficient, robust, and powerful software correlator. Publ. Astron. Soc. Pac. 123, 275 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Kettenis, M., van Langevelde, H. J., Reynolds, C. & Cotton, B. ParselTongue: AIPS talking Python. In Astronomical Data Analysis Software and Systems XV, Astronomical Society of the Pacific Conference Series Vol. 351 (eds Gabriel, C. et al.) 497–500 (2006).

  • Ding, H. et al. VLBA astrometry of the fastest-spinning magnetar Swift J1818.0−1607: a large trigonometric distance and a small transverse velocity. Astrophys. J. Lett. 971, L13 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Polisensky, E. et al. Exploring the transient radio sky with VLITE: early results. Astrophys. J. 832, 60 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Clarke, T. E. et al. Commensal low frequency observing on the NRAO VLA: VLITE status and future plans. Proc. SPIE 9906, 99065B (2016).

  • Cotton, W. D. Obit: a development environment for astronomical algorithms. Publ. Astron. Soc. Pac. 120, 439 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Polisensky, E., Richards, E., Clarke, T., Peters, W. & Kassim, N. The VLITE database pipeline. In Astronomical Data Analysis Software and Systems XXVII, Astronomical Society of the Pacific Conference Series Vol. 523 (eds Teuben, P. J. et al.) 441–444 (2019).

  • Mohan, N. & Rafferty, D. PyBDSF: Python blob detection and source finder. Astrophysics Source Code Library ascl:1502.007 (2015).

  • Lomb, N. R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 39, 447–462 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Balucinska-Church, M. & McCammon, D. Photoelectric absorption cross sections with variable abundances. Astrophys. J. 400, 699 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • HI4PI Collaboration et al. HI4PI: afull-sky H I survey based on EBHIS and GASS. Astron. Astrophys. 594, A116 (2016).

    Article 

    Google Scholar
     

  • He, C., Ng, C. Y. & Kaspi, V. M. The correlation between dispersion measure and X-ray column density from radio pulsars. Astrophys. J. 768, 64 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Hobbs, G. B., Edwards, R. T. & Manchester, R. N. TEMPO2, a new pulsar-timing package—I. An overview. Mon. Not. R. Astron. Soc. 369, 655–672 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Luo, J. et al. PINT: a modern software package for pulsar timing. Astrophys. J. 911, 45 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC hammer. Publ. Astron. Soc. Pac. 125, 306 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Lorimer, D. R. SIGPROC: Pulsar signal processing programs. Astrophysics Source Code Library ascl:1107.016 (2011).

  • Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy, Cambridge Observing Handbooks for Research Astronomers, Vol. 4. (Cambridge Univ. Press, 2012).

  • Manchester, R. N., Hobbs, G. B., Teoh, A. & Hobbs, M. The Australia Telescope National Facility pulsar catalogue. Astron. J. 129, 1993–2006 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Morgan, J. S. & Ekers, R. A measurement of source noise at low frequency: implications for modern interferometers. Publ. Astron. Soc. Aust. 38, e013 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Calabretta, M. R., Staveley-Smith, L. & Barnes, D. G. A new 1.4 GHz radio continuum map of the sky south of declination +25°. Publ. Astron. Soc. Aust. 31, e007 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Reid, M. J. et al. Trigonometric parallaxes of high mass star forming regions: the structure and kinematics of the Milky Way. Astrophys. J. 783, 130 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Pecaut, M. J. & Mamajek, E. E. Intrinsic colors, temperatures, and bolometric corrections of pre-main-sequence stars. Astrophys. J. Suppl. Ser. 208, 9 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Green, G. M. dustmaps: a Python interface for maps of interstellar dust. J. Open Source Softw. 3, 695 (2018).

    Article 
    ADS 

    Google Scholar
     

  • van Soelen, B. et al. NIR spectral classification of the companion in the gamma-ray binary HESS J1832−093 as an O6 V star. Mon. Not. R. Astron. Soc. 529, L102–L107 (2024).

    ADS 

    Google Scholar
     

  • Wang, Z. Detection of X-ray emission from a bright long-period radio transient. Zenodo https://doi.org/10.5281/zenodo.15228816 (2025).

  • Marino, A. et al. Constraints on the dense matter equation of state from young and cold isolated neutron stars. Nat. Astron. 8, 1020–1030 (2024).

    Article 

    Google Scholar
     

  • Viganò, D., Garcia-Garcia, A., Pons, J. A., Dehman, C. & Graber, V. Magneto-thermal evolution of neutron stars with coupled ohmic, Hall and ambipolar effects via accurate finite-volume simulations. Comput. Phys. Commun. 265, 108001 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments