Thursday, July 31, 2025
No menu items!
HomeNatureDesign of highly functional genome editors by modelling CRISPR–Cas sequences

Design of highly functional genome editors by modelling CRISPR–Cas sequences

  • Pacesa, M., Pelea, O. & Jinek, M. Past, present, and future of crispr genome editing technologies. Cell 187, 1076–1100 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Nijkamp, E., Ruffolo, J. A., Weinstein, E. N., Naik, N. & Madani, A. Progen2: exploring the boundaries of protein language models. Cell Syst. 14, 968–978 (2023).

  • Wu, Z. et al. Programmed genome editing by a miniature CRISPR–Cas12f nuclease. Nat. Chem. Biol. 17, 1132–1138 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, K. et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR–Cas9 ribonucleoprotein. Nat. Biotechnol. https://doi.org/10.1038/s41587-024-02437-3 (2024).

  • Eggers, A. R. et al. Rapid DNA unwinding accelerates genome editing by engineered CRISPR–Cas9. Cell 187, 3249–3261 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, L. T. et al. Engineering highly thermostable Cas12b via de novo structural analyses for one-pot detection of nucleic acids. Cell Rep. Med.4, 101037 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gasiunas, G. et al. A catalogue of biochemically diverse CRISPR–Cas9 orthologs. Nat. Commun. 11, 5512 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casini, A. et al. A highly specific spCas9 variant is identified by in vivo screening in yeast. Nat. Biotechnol. 36, 265–271 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J. H. et al. Evolved Cas9 variants with broad pam compatibility and high DNA specificity. Nature 556, 57–63 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, J. K. et al. Directed evolution of CRISPR–Cas9 to increase its specificity. Nat. Commun. 9, 3048 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vakulskas, C. A. et al. A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24, 1216–1224 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, J. S. et al. Enhanced proofreading governs CRISPR–Cas9 targeting accuracy. Nature 550, 407–410 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Walton, R. T., Christie, K. A., Whittaker, M. N. & Kleinstiver, B. P. Unconstrained genome targeting with near-PAMless engineered CRISPR–Cas9 variants. Science 368, 290–296 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dauparas, J. et al. Atomic context-conditioned protein sequence design using ligandmpnn. Nat. Methods 22, 717–723 (2025).

  • Ruffolo, J. A. & Madani, A. Designing proteins with language models. Nat. Biotechnol. 42, 200–202 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).

  • Subramanian, A. M. & Thomson, M. Unexplored regions of the protein sequence-structure map revealed at scale by a library of foldtuned language models. Preprint at bioRxiv https://doi.org/10.1101/2023.12.22.573145 (2023).

  • Hopf, T. A. et al. The EVcouplings Python framework for coevolutionary sequence analysis. Bioinformatics 35, 1582–1584 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Russ, W. P. et al. An evolution-based model for designing chorismate mutase enzymes. Science 369, 440–445 (2020).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Trinquier, J., Uguzzoni, G., Pagnani, A., Zamponi, F. & Weigt, M. Efficient generative modeling of protein sequences using simple autoregressive models. Nat. Commun. 12, 5800 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferruz, N., Schmidt, S. & Höcker, B. ProtGPT2 is a deep unsupervised language model for protein design. Nat. Commun. 13, 1–10 (2022).


    Google Scholar
     

  • Johnson, S. R. et al. Computational scoring and experimental evaluation of enzymes generated by neural networks. Nat. Biotechnol. 43, 396–405 (2024).

  • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas9 system. Cell 163, 759–771 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cox, D. B. T. et al. RNA editing with CRISPR–Cas13. Science 358, 1019–1027 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chandonia, J.-M., Fox, N. K. & Brenner, S. E. Scope: classification of large macromolecular structures in the structural classification of proteins—extended database. Nucleic Acids Res. 47, D475–D481 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).


    Google Scholar
     

  • Conant, D. et al. Inference of CRISPR edits from sanger trace data. CRISPR J. 5, 123–130 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Tsai, S. Q. et al. Guide-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Cameron, P. et al. Mapping the genomic landscape of CRISPR–Cas9 cleavage. Nat. Methods 14, 600–606 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmid-Burgk, J. L. et al. Highly parallel profiling of Cas9 variant specificity. Mol. Cell 78, 794–800 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alonso-Lerma, B. et al. Evolution of CRISPR-associated endonucleases as inferred from resurrected proteins. Nat. Microbiol. 8, 77–90 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ferdosi, S. R. et al. Multifunctional CRISPR–Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun. 10, 1842 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacesa, M. et al. R-loop formation and conformational activation mechanisms of Cas9. Nature 609, 191–196 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, L. et al. Pam-flexible genome editing with an engineered chimeric Cas9. Nat. Commun. 14, 6175 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell 63, 633–646 (2016).

    PubMed 

    Google Scholar
     

  • Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Boutet, E. et al. in Plant Bioinformatics: Methods and Protocols (ed. Edwards, D.) Ch. 2 (Springer Nature, 2016).

  • Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen, E. et al. Sequence modeling and design from molecular to genome scale with Evo. Science 386, eado9336 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Donohoue, P. D. et al. Conformational control of Cas9 by crispr hybrid RNA-DNA guides mitigates off-target activity in T cells. Mol. Cell 81, 3637–3649 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, A. E., Lu, T. & Huang, P.-S. Sparks of function by de novo protein design. Nat. Biotechnol. 42, 203–215 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ruffolo, J. Fine-tuned language models for CRISPR–Cas and Cas9 protein generation. Zenodo https://doi.org/10.5281/zenodo.15128064 (2025).

  • Ruffolo, J. Modeling code for design and prediction of Cas9-like proteins. Zenodo https://doi.org/10.5281/zenodo.15231637 (2025).

  • Ciciani, M. et al. Automated identification of sequence-tailored Cas9 proteins using massive metagenomic data. Nat. Commun. 13, 6474 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang, Z. et al. CasPDB: an integrated and annotated database for Cas proteins from bacteria and archaea. Database 2019, baz093 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coudert, E. et al. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 39, btac793 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Pourcel, C. et al. CRISPRCasdb a successor of CRISPRdb containing CRISPR arrays and cas genes from complete genome sequences, and tools to download and query lists of repeats and spacers. Nucleic Acids Res. 48, D535–D544 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Makarova, K. S. et al. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Kempen, M. et al. Fast and accurate protein structure search with foldseek. Nat. Biotechnol. 42, 243–246 (2024).

    PubMed 

    Google Scholar
     

  • Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of Dual-RNA and Cas9 among orthologous type II CRISPR-Cas9 systems. Nucleic Acids Res. 42, 2577–2590 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments