Thursday, August 14, 2025
No menu items!
HomeNatureDelocalized electrolyte design enables 600 Wh kg−1 lithium metal pouch cells

Delocalized electrolyte design enables 600 Wh kg−1 lithium metal pouch cells

  • Liu, D. H. et al. Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chem. Soc. Rev. 49, 5407–5445 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 375, 739–745 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Liquid electrolyte: the nexus of practical lithium metal batteries. Joule 6, 588–616 (2022).

    CAS 

    Google Scholar
     

  • Fan, X. & Wang, C. High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Lu, D. et al. Ligand-channel-enabled ultrafast Li-ion conduction. Nature 627, 101–107 (2024).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, Y. et al. Designing an asymmetric ether-like lithium salt to enable fast-cycling high-energy lithium metal batteries. Nat. Energy 8, 934–945 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Emerging electrolytes with fluorinated solvents for rechargeable lithium-based batteries. Chem. Soc. Rev. 52, 2713–2763 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Y. X. et al. Regulating interfacial chemistry in lithium‐ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. 60, 4090–4097 (2021).

    CAS 

    Google Scholar
     

  • Baird, M. A., Song, J., Tao, R., Ko, Y. & Helms, B. A. Locally superconcentrated electrolytes for ultra-fast-charging lithium metal batteries with high-voltage cathodes. ACS Energy Lett. 7, 3826–3834 (2022).

    CAS 

    Google Scholar
     

  • Efaw, C. M. et al. Localized high-concentration electrolytes get more localized through micelle-like structures. Nat. Mater. 22, 1531–1539 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Y. et al. Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery. Nat. Commun. 14, 8326 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Piao, Z., Gao, R., Liu, Y., Zhou, G. & Cheng, H. M. A review on regulating Li+ solvation structures in carbonate electrolytes for lithium metal batteries. Adv. Mater. 35, 2206009 (2023).

    CAS 

    Google Scholar
     

  • Cheng, H. et al. Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, D. et al. A thermodynamic cycle‐based electrochemical windows database of 308 electrolyte solvents for rechargeable batteries. Adv. Funct. Mater. 33, 2212342 (2023).

    CAS 

    Google Scholar
     

  • Gao, Y. C. et al. Data-driven insight into the reductive stability of ion–solvent complexes in lithium battery electrolytes. J. Am. Chem. Soc. 145, 23764–23770 (2023).

    CAS 
    PubMed 

    Google Scholar
     

  • Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, eabq3750 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Z. et al. Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy Environ. Sci. 6, 1806–1810 (2013).

    CAS 

    Google Scholar
     

  • Jie, Y. et al. Towards long-life 500 Wh kg−1 lithium metal pouch cells via compact ion-pair aggregate electrolytes. Nat. Energy 9, 987–998 (2024).

    CAS 

    Google Scholar
     

  • Wang, Y. Application-oriented design of machine learning paradigms for battery science. NPJ Comput. Mater. 11, 89 (2025).


    Google Scholar
     

  • Kim, S. C. et al. High-entropy electrolytes for practical lithium metal batteries. Nat. Energy 8, 814–826 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Chen, K. H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. J. Mater. Chem. A 5, 11671–11681 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. High entropy liquid electrolytes for lithium batteries. Nat. Commun. 14, 440 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, Z., Yang, H., Pan, A., He, P. & Zhou, H. An improved 9 micron thick separator for a 350 Wh/kg lithium metal rechargeable pouch cell. Nat. Commun. 13, 6788 (2022).

  • Huang, Y. et al. Eco-friendly electrolytes via a robust bond design for high-energy Li metal batteries. Energy Environ. Sci. 15, 4349–4361 (2022).

  • Liu, Z., Guo, D., Fan, W., Xu, F. & Yao, X. Expansion-tolerant lithium anode with built-in LiF-rich interface for stable 400 Wh kg−1 lithium metal pouch cells. ACS Mater. Lett. 4, 1516–1522 (2022).

  • Gao, Y. et al. Effect of the supergravity on the formation and cycle life of non-aqueous lithium metal batteries. Nat. Commun. 13, 5 (2022).

  • Yang, B. et al. High-safety lithium metal pouch cells for extreme abuse conditions by implementing flame-retardant perfluorinated gel polymer electrolytes. Energy Storage Mater. 65, 103124 (2024).

  • Zhao, P. et al. Constructing self-adapting electrostatic interface on lithium metal anode for stable 400 Wh kg−1 pouch cells. Adv. Energy Mater. 12, 2200568 (2022).

  • Zhang, Q. et al. Homogeneous and mechanically stable solid-electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. Nat. Energy 8, 725–735 (2023).

  • Zhang, K. et al. A high-performance lithium metal battery with ion-selective nanofluidic transport in a conjugated microporous polymer protective layer. Adv. Mater. 33, 2006323 (2021).

  • Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    ADS 

    Google Scholar
     

  • Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. R. H. J. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • Hartwigsen, C., Goedecker, S. & Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Krack, M. & Parrinello, M. All-electron ab-initio molecular dynamics. Phys. Chem. Chem. Phys. 2, 2105–2112 (2000).

    CAS 

    Google Scholar
     

  • VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments