Boyd, P. W. & Trull, T. W. Understanding the export of biogenic particles in oceanic waters: is there consensus? Progr. Oceanogr. 72, 276â312 (2007).
Henson, S. A. et al. A reduced estimate of the strength of the oceanâs biological carbon pump. Geophys. Res. Lett. 38, L04606 (2011).
Kwon, E. Y., Primeau, F. & Sarmiento, J. L. The impact of remineralization depth on the airâsea carbon balance. Nat. Geosci. 2, 630â635 (2009).
Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the oceanâs twilight zone. Limnol. Oceanogr. 53, 1327â1338 (2008).
Giering, S. L. et al. Reconciliation of the carbon budget in the oceanâs twilight zone. Nature 507, 480â483 (2014).
Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. I 34, 267â285 (1987).
Marsay, C. M. et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. Proc. Natl Acad. Sci. USA 112, 1089â1094 (2015).
Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochem. Cycles 29, 1044â1059 (2015).
Boyd, P. W., McDonnell, A., Valdez, J., LeFevre, D. & Gall, M. P. RESPIRE: an in situ particle interceptor to conduct particle remineralization and microbial dynamics studies in the oceansâ twilight zone. Limnol. Oceanogr. Methods 13, 494â508 (2015).
Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).
Pavia, F. J. et al. Shallow particulate organic carbon regeneration in the South Pacific Ocean. Proc. Natl Acad. Sci. USA 116, 9753â9758 (2019).
Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).
Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606â8611 (2016).
Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochem. Cycles 32, 858â876 (2018).
Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210â1232 (2009).
Omand, M. M., Govindarajan, R., He, J. & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: sensitivity to particle characteristics. Sci. Rep. 10, 5582 (2020).
Nguyen, T. T. et al. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat. Commun. 13, 1657 (2022).
Henson, S. A. et al. Uncertain response of ocean biological carbon export in a changing world. Nat. Geosci. 15, 248â254 (2022).
Leu, A. O., Eppley, J. M., Burger, A. & DeLong, E. F. Diverse genomic traits differentiate sinking-particle-associated versus free-living microbes throughout the oligotrophic open ocean water column. mBio 13, e01569-22 (2022).
Bressac, M. et al. Resupply of mesopelagic dissolved iron controlled by particulate iron composition. Nat. Geosci. 12, 995â1000 (2019).
Collins, J. R. et al. The multiple fates of sinking particles in the North Atlantic Ocean. Glob. Biogeochem. Cycles 29, 1471â1494 (2015).
Belcher, A. et al. Depth-resolved particle-associated microbial respiration in the northeast Atlantic. Biogeosciences 13, 4927â4943 (2016).
Karl, D. M., Knauer, G. A. & Martin, J. H. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438â441 (1988).
Herraiz-Borreguero, L. & Rintoul, S. R. Regional circulation and its impact on upper ocean variability south of Tasmania. Deep Sea Res. II 58, 2071â2081 (2011).
Iversen, M. H. Carbon export in the ocean: a biologistâs perspective. Ann. Rev. Mar. Sci. 15, 357â381 (2023).
Stukel, M. R., Ohman, M. D., Kelly, T. B. & Biard, T. The roles of suspension-feeding and flux-feeding zooplankton as gatekeepers of particle flux into the mesopelagic ocean in the Northeast Pacific. Front. Mar. Sci. 6, 397 (2019).
Goldblatt, R. H., Mackas, D. L. & Lewis, A. G. Mesozooplankton community characteristics in the NE subarctic Pacific. Deep Sea Res. II 46, 2619â2644 (1999).
Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep Sea Res. II 55, 1615â1635 (2008).
Burd, A. B. et al. Assessing the apparent imbalance between geochemical and biochemical indicators of meso-and bathypelagic biological activity: what the @ $â¯! is wrong with present calculations of carbon budgets? Deep Sea Res. II 57, 1557â1571 (2010).
Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718â724 (2013).
Brewer, P. G. & Peltzer, E. T. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth. Phil. Trans. R. Soc. A 375, 20160319 (2017).
Kong, L. F. et al. Illuminating key microbial players and metabolic processes involved in the remineralization of particulate organic carbon in the oceanâs twilight zone by metaproteomics. Appl. Environ. Microbiol. 87, e00986â21 (2021).
Vazquez-Dominguez, E., Vaque, D. & Gasol, J. M. Ocean warming enhances respiration and carbon demand of coastal microbial plankton. Glob. Change Biol. 13, 1327â1334 (2007).
Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregatesâpotential implications for deep ocean export processes. Biogeosciences 10, 4073â4085 (2013).
Cavan, E. L. & Boyd, P. W. Effect of anthropogenic warming on microbial respiration and particulate organic carbon export rates in the sub-Antarctic Southern Ocean. Aquat. Microb. Ecol. 82, 111â127 (2018).
Apple, J. K., Del Giorgio, P. A. & Kemp, W. M. Temperature regulation of bacterial production, respiration, and growth efficiency in a temperate salt-marsh estuary. Aquat. Microb. Ecol. 43, 243â254 (2006).
Yung, C. M. et al. Thermally adaptive tradeoffs in closely related marine bacterial strains. Environ. Microbiol. 17, 2421â2429 (2015).
Boscolo-Galazzo, F., Crichton, K. A., Barker, S. & Pearson, P. N. Temperature dependency of metabolic rates in the upper ocean: a positive feedback to global climate change? Glob. Planet. Change 170, 201â212 (2018).
Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148â1152 (2021).
McDonnell, A. M. P., Boyd, P. W. & Buesseler, K. O. Effects of sinking velocities and microbial respiration rates on the attenuation of particulate carbon fluxes through the mesopelagic zone. Glob. Biogeochem. Cycles 29, 175â193 (2015).
Boyd, P. W. & Kennedy, F. Microbes in a sea of sinking particles. Nat. Microbiol. 6, 1479â1480 (2021).
Pomeroy, L. R. & Wiebe, W. J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat. Microb. Ecol. 23, 187â204 (2001).
López-Urrutia, Ã. & Morán, X. A. G. Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88, 817â822 (2007).
Williams, P. J., le, B. & Robertson, J. E. Overall plankton oxygen and carbon dioxide metabolism: the problem of reconciling observations and calculations of photosynthetic quotients. J. Plankton Res. 13, 153â169 (1991).
Tanioka, T. & Matsumoto, K. Stability of marine organic matter respiration stoichiometry. Geophys. Res. Lett. 47, e2019GL085564 (2020).
del Giorgio, P. A. & Williams, P. J. (eds) Respiration in Aquatic Ecosystems (Oxford Univ. Press, 2005).
Fierer, N., Craine, J. M., McLauchlan, K. & Schimel, J. P. Litter quality and the temperature sensitivity of decomposition. Ecology 86, 320â326 (2005).
Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854â857 (2010).
Pold, G. et al. Carbon use efficiency and its temperature sensitivity covary in soil bacteria. mBio 11, e02293â19 (2020).
Smith, T. P., Clegg, T., Bell, T. & Pawar, S. Systematic variation in the temperature dependence of bacterial carbon use efficiency. Ecol. Lett. 24, 2123â2133 (2021).
DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the oceanâs interior. Science 311, 496â503 (2006).
Baumas, C. M. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. ISME J. 15, 1695â1708 (2021).
Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).
Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9, 2743 (2018).
Briggs, N., DallâOlmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791â793 (2020).
Poulsen, L. K., Moldrup, M., Berge, T. & Hansen, P. J. Feeding on copepod fecal pellets: a new trophic role of dinoflagellates as detritivores. Mar. Ecol. Prog. Ser. 441, 65â78 (2011).
Mayor, D. J., Sanders, R., Giering, S. L. & Anderson, T. R. Microbial gardening in the oceanâs twilight zone: detritivorous metazoans benefit from fragmenting, rather than ingesting, sinking detritus. Bioessays 36, 1132â1137 (2014).
Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) 447â587 (Cambridge Univ. Press, 2019).
Cooley, S. et al. Oceans and coastal ecosystems and their services. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Pörtner, H.-O. et al.) 379â550 (Cambridge Univ. Press, 2022).
Stemmann, L., Jackson, G. A. & Gorsky, G. A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processesâPart II: application to a three year survey in the NW Mediterranean Sea. Deep Sea Res. I 51, 885â908 (2004).
Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775â780 (2021).
Sanders, R. J. et al. Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS): fieldwork, synthesis, and modeling efforts. Front. Mar. Sci. 3, 136 (2016).
Korb, R. E. et al. Regional and seasonal differences in microplankton biomass, productivity, and structure across the Scotia Sea: implications for the export of biogenic carbon. Deep Sea Res. II 59, 67â77 (2012).
Rembauville, M., Manno, C., Tarling, G. A., Blain, S. & Salter, I. Strong contribution of diatom resting spores to deep-sea carbon transfer in naturally iron-fertilized waters downstream of South Georgia. Deep Sea Res. I 115, 22â35 (2016).
Shannon, L. V. & Nelson, G. in The South Atlantic Past and Present Circulation (eds Wefer, G. W. H. et al.) 163â210 (Springer, 1996).
Lovecchio, E., Henson, S., Carvalho, F. & Briggs, N. Oxygen variability in the offshore northern Benguela upwelling system from glider data. J. Geophys. Res. Oceans 127, e2022JC019063 (2022).
Trull, T. W. et al. Autonomous multi-trophic observations of productivity and export at the Australian Southern Ocean Time Series (SOTS) reveal sequential mechanisms of physicalâbiological coupling. Front. Mar. Sci. 6, 525 (2019).
Wynn-Edwards, et al. Particle fluxes at the Australian Southern Ocean Time Series (SOTS) achieve organic carbon sequestration at rates close to the global median, are dominated by biogenic carbonates, and show no temporal trends over 20-years. Front. Earth Sci. 8, 329 (2020).
Eriksen, R. et al. Seasonal succession of phytoplankton community structure from autonomous sampling at the Australian Southern Ocean Time Series (SOTS) observatory. Mar. Ecol. Progr. Ser. 589, 13â31 (2018).
Siegel, D. et al. An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment. Elem. Sci. Anth. 9, 00107 (2021).
Estapa, M. et al. Biogenic sinking particle fluxes and sediment trap collection efficiency at Ocean Station Papa. Elementa 9, 00122 (2021).
Boyd, P. & Harrison, P. J. Phytoplankton dynamics in the NE subarctic Pacific. Deep Sea Res. II 46, 2405â2432 (1999).
Buesseler, K. O. et al. High-resolution spatial and temporal measurements of particulate organic carbon flux using thorium-234 in the northeast Pacific Ocean during the EXport Processes in the Ocean from RemoTe Sensing field campaign. Elementa 8, 030 (2020).
Guieu, C. et al. Introduction: Process studies at the airâsea interface after atmospheric deposition in the Mediterranean Seaâobjectives and strategy of the PEACETIME oceanographic campaign (MayâJune 2017). Biogeosciences 17, 5563â5585 (2020).
Guerzoni, S. et al. The role of atmospheric deposition in the biogeochemistry of the Mediterranean Sea. Progr. Oceanogr. 44, 147â190 (1999).
Claustre, H., Sciandra, A. & Vaulot, D. Introduction to the special section bio-optical and biogeochemical conditions in the south east Pacific in late 2004: the BIOSOPE program. Biogeosciences 5, 679â691 (2008).
Bonnet, S. et al. Natural iron fertilization by shallow hydrothermal sources fuels diazotroph blooms in the ocean. Science 380, 812â817 (2023).
Lampitt, R. S., Wishner, K. F., Turley, C. M. & Angel, M. V. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Mar. Biol. 116, 689â702 (1993).
Kiørboe, T. Marine snow microbial communities: scaling of abundances with aggregate size. Aquat. Microb. Ecol. 33, 67â75 (2003).
Owens, S. A., Pike, S. & Buesseler, K. O. Thorium-234 as a tracer of particle dynamics and upper ocean export in the Atlantic Ocean. Deep Sea Res. II 116, 42â59 (2015).
Lamborg, C. H. et al. The flux of bio-and lithogenic material associated with sinking particles in the mesopelagic âtwilight zoneâ of the northwest and North Central Pacific Ocean. Deep Sea Res. II 55, 1540â1563 (2008).
Thierry, V. et al. Processing Argo Oxygen Data at the DAC Level Version 2.3.1 (2018).
Berggren, M., Lapierre, J. F. & Del Giorgio, P. A. Magnitude and regulation of bacterioplankton respiratory quotient across freshwater environmental gradients. ISME J. 6, 984â993 (2012).
Robinson, C. Microbial respiration, the engine of ocean deoxygenation. Front. Mar. Sci. 5, 533 (2019).
Anderson, L. A. & Sarmiento, J. L. Redfield ratios of remineralization determined by nutrient data analysis. Glob. Biogeochem. Cycles 8, 65â80 (1994).
Lauvset, S. et al. GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product. Earth Syst. Sci. Data 14, 5543â5572 (2022).
Karl, D. M. & Tilbrook, B. D. Production and transport of methane in oceanic particulate organic matter. Nature 368, 732â734 (1994).
Boyd, P. W. et al. Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep Sea Res. II 46, 2761â2792 (1999).
Mackinson, B. L., Moran, S. B., Lomas, M. W., Stewart, G. M. & Kelly, R. P. Estimates of micro-, nano-, and picoplankton contributions to particle export in the northeast Pacific. Biogeosciences 12, 3429â3446 (2015).
Ramondenc, S. et al. An initial carbon export assessment in the Mediterranean Sea based on drifting sediment traps and the Underwater Vision Profiler data sets. Deep Sea Res. I 117, 107â119 (2016).
Bressac, M. et al. Subsurface iron accumulation and rapid aluminum removal in the Mediterranean following African dust deposition. Biogeosciences 18, 6435â6453 (2021).
Baker, C. A., Estapa, M. L., Iversen, M., Lampitt, R. & Buesseler, K. Are all sediment traps created equal? An intercomparison study of carbon export methodologies at the PAP-SO site. Progr. Oceanogr. 184, 102317 (2020).
Cael, B. B. & Bisson, K. Particle flux parameterizations: quantitative and mechanistic similarities and differences. Front. Mar. Sci. 5, 395 (2018).
Berelson, W. M. Particle settling rates increase with depth in the ocean. Deep Sea Res. II 49, 237â251 (2001).
VillaâAlfageme, M. et al. Geographical, seasonal, and depth variation in sinking particle speeds in the North Atlantic. Geophys. Res. Lett. 43, 8609â8616 (2016).
Boyd, P. W., Ellwood, M. J., Tagliabue, A. & Twining, B. S. Biotic and abiotic retention, recycling and remineralization of metals in the ocean. Nat. Geosci. 10, 167â173 (2017).
Kamalanathan, M. et al. Exoenzymes as a signature of microbial response to marine environmental conditions. mSystems 5, e00290â20 (2020).
Cezairliyan, B. & Ausubel, F. M. Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc. Natl Acad. Sci. USA 114, E7796âE7802 (2017).
Mahmoudi, N. et al. Illuminating microbial speciesâspecific effects on organic matter remineralization in marine sediments. Environ. Microbiol. 22, 1734â1747 (2020).
Smith, E. M. Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community. Aquat. Microb. Ecol. 16, 27â35 (1998).
Cabré, A., Shields, D., Marinov, I. & Kostadinov, T. S. Phenology of size-partitioned phytoplankton carbon-biomass from ocean color remote sensing and CMIP5 models. Front. Mar. Sci. 3, 39 (2016).