Noriega, J. I. & Tambussi, C. P. A Late Cretaceous Presbyornithidae (Aves: Anseriformes) from Vega Island, Antarctic Peninsula: paleobiogeographic implications. Ameghiniana 32, 57–61 (1995).
Clarke, J. A., Tambussi, C. P., Noriega, J. I., Erickson, G. M. & Ketcham, R. A. Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature 433, 305–308 (2005).
Clarke, J. A. et al. Fossil evidence of the avian vocal organ from the Mesozoic. Nature 538, 502–505 (2016).
West, A. R. et al. An avian femur from the Late Cretaceous of Vega Island, Antarctic Peninsula: removing the record of cursorial landbirds from the Mesozoic of Antarctica. PeerJ 7, e7231 (2019).
Acosta Hospitaleche, C. & Worthy, T. H. New data on the Vegavis iaai holotype from the Maastrichtian of Antarctica. Cretaceous Res. 124, 104818 (2021).
Roberts, E. M. et al. New age constraints support a K/Pg boundary interval on Vega Island, Antarctica: implications for latest Cretaceous vertebrates and paleoenvironments. GSA Bull. 135, 867–885 (2022).
Agnolín, F. L., Brissón Egli, F., Chatterjee, S., Garcia Marsà, J. A. & Novas, F. E. Vegaviidae, a new clade of southern diving birds that survived the K/T boundary. Sci. Nat. 104, 87 (2017).
Worthy, T. H., Degrange, F. J., Handley, W. D. & Lee, M. S. Y. The evolution of giant flightless birds and novel phylogenetic relationships for extinct fowl (Aves, Galloanseres). R. Soc. Open Sci. 4, 170975 (2017).
Tambussi, C. P., Degrange, F. J., De Mendoza, R. S., Sferco, E. & Santillana, S. A stem anseriform from the early Palaeocene of Antarctica provides new key evidence in the early evolution of waterfowl. Zool. J. Linn. Soc. 186, 673–700 (2019).
Field, D. J., Benito, J., Chen, A., Jagt, J. W. M. & Ksepka, D. T. Late Cretaceous neornithine from Europe illuminates the origins of crown birds. Nature 579, 397–401 (2020).
Musser, G. & Clarke, J. A. A new Paleogene fossil and a new dataset for waterfowl (Aves: Anseriformes) clarify phylogeny, ecological evolution, and avian evolution at the K-Pg Boundary. PLoS ONE 19, e0278737 (2024).
Mayr, G. Paleogene Fossil Birds (Springer International Publishing, 2022).
Houde, P., Dickson, M. & Camarena, D. Basal Anseriformes from the early Paleogene of North America and Europe. Diversity 15, 233 (2023).
Ericson, P. G. P. et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543–547 (2006).
Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).
Kuhl, H. et al. An unbiased molecular approach using 3′-UTRs resolves the avian family-level tree of life. Mol. Biol. Evol. 38, 108–127 (2021).
Brocklehurst, N. & Field, D. J. Tip dating and Bayes factors provide insight into the divergences of crown bird clades across the end-Cretaceous mass extinction. Proc. R. Soc. Lond. B. Biol. Sci. 291, 20232618 (2024).
Torres, C. R., Norell, M. A. & Clarke, J. A. Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: the avian brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099 (2021).
Crane, A. et al. Taphonomic damage obfuscates interpretation of the retroarticular region of the Asteriornis mandible. Geobios https://doi.org/10.1016/j.geobios.2024.03.003 (2024).
Chatterjee, S. The morphology and systematics of Polarornis, a Cretaceous loon (Aves: Gaviidae) from Antarctica. In Proc. 5th Symposium of the Society of Avian Paleontology and Evolution, Beijing 2000 (eds. Zhou, Z. & Zhang, F.) 125–155 (Science Press, Beijing, 2002).
Mayr, G. A partial skeleton of a new fossil loon (Aves, Gaviiformes) from the early Oligocene of Germany with preserved stomach content. J. Ornithol. 145, 281–286 (2004).
Mayr, G., De Pietri, V. L., Love, L., Mannering, A. & Scofield, R. P. Oldest, smallest and phylogenetically most basal pelagornithid, from the early Paleocene of New Zealand, sheds light on the evolutionary history of the largest flying birds. Pap. Palaeontol. 7, 217–233 (2021).
Benito, J., Kuo, P.-C., Widrig, K. E., Jagt, J. W. M. & Field, D. J. Cretaceous ornithurine supports a neognathous crown bird ancestor. Nature 612, 100–105 (2022).
Álvarez-Herrera, G. P., Rozadilla, S., Agnolín, F. L. & Novas, F. E. Jaw anatomy of Vegavis iaai (Clarke et al., 2005) from the Late Cretaceous Antarctica, and its phylogenetic implications. Geobios 83, 11–20 (2024).
Elzanowski, A. & Stidham, T. A. A galloanserine quadrate from the Late Cretaceous Lance Formation of Wyoming. Auk 128, 138–145 (2011).
Zusi, R. L. A functional and evolutionary analysis of rhynchokinesis in birds. Smithsonian Contrib. Zool. 395 (1984); https://doi.org/10.5479/si.00810282.395.
Elzanowski, A. New observations of the skull of Hesperornis with reconstructions of the bony palate and otic region. Postilla 207 (1991); https://elischolar.library.yale.edu/peabody_museum_natural_history_postilla/207/.
Field, D. J. et al. Complete Ichthyornis skull illuminates mosaic assembly of the avian head. Nature 557, 96–100 (2018).
Alonso, P. D., Milner, A. C., Ketcham, R. A., Cookson, M. J. & Rowe, T. B. The avian nature of the brain and inner ear of Archaeopteryx. Nature 430, 666–669 (2004).
Kurochkin, E. N., Saveliev, S. V., Postnov, A. A., Pervushov, E. M. & Popov, E. V. On the brain of a primitive bird from the Upper Cretaceous of European Russia. Paleontol. J. 40, 655–667 (2006).
Walsh, S. A., Milner, A. C. & Bourdon, E. A reappraisal of Cerebavis cenomanica (Aves, Ornithurae), from Melovatka, Russia. J. Anat. 229, 215–227 (2016).
Chiappe, L. M., Navalón, G., Martinelli, A. G., Nava, W. & Field, D. J. Fossil basicranium clarifies the origin of the avian central nervous system and inner ear. Proc. R. Soc. Lond. B Biol. Sci. 289, 20021398 (2022).
Milner, A. C. & Walsh, S. A. Avian brain evolution: new data from Palaeogene birds (Lower Eocene) from England. Zool. J. Linn. Soc. 155, 198–219 (2009).
Zelenitsky, D. K., Therrien, F., Ridgely, R. C., McGee, A. R. & Witmer, L. M. Evolution of olfaction in non-avian theropod dinosaurs and birds. Proc. R. Soc. Lond. B Biol. Sci. 278, 3625–3634 (2011).
Smith, N. A. & Clarke, J. A. Endocranial anatomy of the Charadriiformes: sensory system variation and the evolution of wing-propelled diving. PLoS ONE 7, e49584 (2012).
Kawabe, S., Ando, T. & Endo, H. Enigmatic affinity in the brain morphology between plotopterids and penguins, with a comprehensive comparison among water birds: neuroanatomy of Plotopteridae. Zool. J. Linn. Soc. 170, 467–493 (2014).
Proffitt, J. V., Clarke, J. A. & Scofield, R. P. Novel insights into early neuroanatomical evolution in penguins from the oldest described penguin brain endocast. J. Anat. 229, 228–238 (2016).
Handley, W. D. & Worthy, T. H. Endocranial anatomy of the giant extinct Australian mihirung birds (Aves, Dromornithidae). Diversity 13, 124 (2021).
Riamon, S. et al. The endocast of the insular and extinct Sylviornis neocaledoniae (Aves, Galliformes), reveals insights into its sensory specializations and its twilight ecology. Sci. Rep. 12, 21185 (2022).
Howard, H. A new wading bird from the Eocene of Patagonia. Am. Mus. Novitates 1710 (American Museum of Natural History, 1955); https://digitallibrary.amnh.org/items/bc030d2f-1df2-425b-aebc-aabf8519c29d.
Mayr, G., De Pietri, V. L., Scofield, R. P. & Worthy, T. H. On the taxonomic composition and phylogenetic affinities of the recently proposed clade Vegaviidae Agnolín et al., 2017 – neornithine birds from the Upper Cretaceous of the Southern Hemisphere. Cretac. Res. 86, 178–185 (2018).
Mayr, G., Carrió, V. & Kitchener, A. On the “screamer-like” birds from the British London Clay: an archaic anseriform-galliform mosaic and a non-galloanserine “barb-necked” species of Perplexicervix. Palaeontol. Electron. https://doi.org/10.26879/1301 (2023).
Mayr, G. A new avian species with tubercle-bearing cervical vertebrae from the Middle Eocene of Messel (Germany). In Proc. VII International Meeting of the Society of Avian Paleontology and Evolution (eds Boles, W. E. & Wrthy, T. H.). Rec. Aust. Mus. 62, 21–28 (2010).
Bhattacharyya, B. N. Avian jaw function: adaptation of the seven–muscle system and a review. Proc. Zool. Soc. 66, 75–85 (2013).
Sun, Z. et al. Rapid and recent diversification patterns in Anseriformes birds: inferred from molecular phylogeny and diversification analyses. PLoS ONE 12, e0184529 (2017).
Garcia Marsà, J. A., Agnolín, F. L. & Novas, F. Bone microstructure of Vegavis iaai (Aves, Anseriformes) from the Upper Cretaceous of Vega Island, Antarctic Peninsula. Hist. Biol. 31, 163–167 (2019).
Beecher, W. J. Adaptations for food-getting in the American blackbirds. Auk 68, 411–440 (1951).
Bock, W. J. Kinetics of the avian skull. J. Morphol. 114, 1–41 (1964).
Zusi, R. L. The role of the depressor mandibulae muscle in kinesis of the avian skull. Proc. U S Natl Mus. 123, 1–28 (1967).
Zweers, G. A. & Vanden Berge, J. C. Evolutionary transitions in the trophic system of the wader-waterfowl complex. Neth. J. Zool. 47, 255–287 (1996).
Ericson, P. G. P. Systematic relationships of the palaeogene family Presbyornithidae (Aves: Anseriformes). Zool. J. Linn. Soc. 121, 429–483 (1997).
Mayr, G. Late Oligocene mousebird converges on parrots in skull morphology. Ibis (Lond. 1859) 155, 384–396 (2013).
Clarke, J. A. Morphology, phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Avialae: Ornithurae). Bull. Am. Mus. Nat. Hist. 286, 1–179 (2004).
Bell, A. & Chiappe, L. M. Anatomy of Parahesperornis: evolutionary mosaicism in the Cretaceous Hesperornithiformes (Aves). Life 10, 62 (2020).
Olson, S. L. The anseriform relationships of Anatalavis Olson and Parris (Anseranatidae), with a new species from the lower Eocene London Clay. Smithsonian Contrib. Paleobiol. 89, 231–243 (1999).
Olson, S. L. & Feduccia, A. Presbyornis and the origin of the Anseriformes (Aves: Charadriomorphae). Smithsonian Contrib. Zool. 323 (Smithsonian Institution Press, 1980); https://doi.org/10.5479/si.00810282.323.
Feduccia, A. The Age of Birds (Harvard Univ. Press, 1980).
De Pietri, V. L., Scofield, R. P., Zelenkov, N., Boles, W. E. & Worthy, T. H. The unexpected survival of an ancient lineage of anseriform birds into the Neogene of Australia: the youngest record of Presbyornithidae. R. Soc. Open Sci. 3, 150635 (2016).
Zelenkov, N. V. & Stidham, T. A. Possible filter-feeding in the extinct Presbyornis and the evolution of Anseriformes (Aves). Зоол. ж. 97, 943–956 (2018).
Berv, J. S. & Field, D. J. Genomic signature of an avian Lilliput Effect across the K–Pg extinction. Syst. Biol. 67, 1–13 (2018).
Feduccia, A. The Origin and Evolution of Birds (Yale Univ. Press, 1999).
Chiappe, L. M. Glorified Dinosaurs (Wiley, 2007).
Roberts, E. M. et al. Stratigraphy and vertebrate paleoecology of Upper Cretaceous–?lowest Paleogene strata on Vega Island, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 402, 55–72 (2014).
Cordes-Person, A., Acosta Hospitaleche, C., Case, J. & Martin, J. An enigmatic bird from the lower Maastrichtian of Vega Island, Antarctica. Cretac. Res. 108, 104314 (2020).
Longrich, N. An ornithurine-dominated avifauna from the Belly River Group (Campanian, Upper Cretaceous) of Alberta, Canada. Cretac. Res. 30, 161–177 (2009).
Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary. Proc. Natl. Acad. Sci. USA 108, 15253–15257 (2011).
Davis, S. N. et al. New records of Theropoda from a Late Cretaceous (Campanian-Maastrichtian) locality in the Magallanes-Austral Basin, Patagonia, and insights into end Cretaceous theropod diversity. J. South Am. Earth Sci. 122, 104163 (2023).
Clarke, J. & Norell, M. The morphology and phylogenetic position of Apsaravis ukhaana from the Late Cretaceous of Mongolia. Am. Mus. Novitates 3387, 1–47 (2002).
Clarke, J. A., Zhou, Z. & Zhang, F. Insight into the evolution of avian flight from a new clade of Early Cretaceous ornithurines from China and the morphology of Yixianornis grabaui. J. Anat. 208, 287–308 (2006).
Li, Z., Zhou, Z., Wang, M. & Clarke, J. A. A new specimen of large-bodied basal enantiornithine Bohaiornis from the Early Cretaceous of China and the inference of feeding ecology in Mesozoic birds. J. Paleontol. 88, 99–108 (2014).
Huang, J. et al. A new ornithurine from the Early Cretaceous of China sheds light on the evolution of early ecological and cranial diversity in birds. PeerJ 4, e1765 (2016).
Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) https://doi.org/10.1109/GCE.2010.5676129 (IEEE, 2010).
Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755 (2001).
Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).
Worthy, T. H. et al. Osteology supports a stem-galliform affinity for the giant extinct flightless bird Sylviornis neocaledoniae (Sylviornithidae, Galloanseres). PLoS ONE 11, e0150871 (2016).
Swofford, D. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) (Sinauer Associates, 2003).
Torres, C. R. et al. Data from: Cretaceous Antarctic bird skull elucidates early avian ecological diversity [dataset]. Dryad https://doi.org/10.5061/dryad.n02v6wx3k (2024).