Thursday, October 24, 2024
No menu items!
HomeNatureCoral photosymbiosis on Mid-Devonian reefs

Coral photosymbiosis on Mid-Devonian reefs

  • Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian–dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fournier, A. The story of symbiosis with zooxanthellae, or how they enable their host to thrive in a nutrient poor environment. BioSciences Master Reviews https://biologie.ens-lyon.fr/biologie/ressources/bibliographies/pdf/m1-12-13-biosci-reviews-fournier-a-2c-m.pdf?lang=fr (2013).

  • Coates, A. G. & Jackson, J. B. C. Clonal growth, algal symbiosis, and reef formation by corals. Paleobiology 13, 363–378 (1987).

    Article 

    Google Scholar
     

  • Scrutton, C. T. The Palaeozoic corals, II: structure, variation and palaeoecology. Proc. Yorks. Geol. Soc. 52, 1–57 (1998).

    Article 

    Google Scholar
     

  • Scrutton, C. T. The Palaeozoic corals, I: origins and relationships. Proc. Yorks. Geol. Soc. 51, 177–208 (1997).

    Article 

    Google Scholar
     

  • Bridge, T. C. L., Baird, A. H., Pandolfi, J. M., McWilliam, M. J. & Zapalski, M. K. Functional consequences of Palaeozoic reef collapse. Sci. Rep. 12, 1386 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Copper, P. & Scotese, C. R. in Extreme Depositional Environments: Mega End Members in Geologic Time (eds Chan, M. A. & Archer, A. W.) https://doi.org/10.1130/0-8137-2370-1.209 (2003).

  • Joachimski, M. M. et al. Devonian climate and reef evolution: insights from oxygen isotopes in apatite. Earth Planet. Sci. Lett. 284, 599–609 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ries, J. B. Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences 7, 2795–2849 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mora, C. I., Driese, S. G. & Seager, P. G. Carbon dioxide in the Paleozoic atmosphere: evidence from carbon-isotope compositions of pedogenic carbonate. Geology 19, 1017–1020 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A. & Demicco, R. V. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science 294, 1086–1088 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ridgwell, A. & Zeebe, R. E. The role of the global carbonate cycle in the regulation and evolution of the Earth system. Earth Planet. Sci. Lett. 234, 299–315 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zeebe, R. E. & Westbroek, P. A. Simple model for the CaCO3 saturation state of the ocean: the “Strangelove”, the “Neritan”, and the “Cretan” Ocean. Geochem. Geophys. Geosyst. 4, 1104 (2003).

  • Copper, P. Ancient reef ecosystem expansion and collapse. Coral Reefs 13, 3–11 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Dopieralska, J. Reconstructing seawater circulation on the Moroccan shelf of Gondwana during the Late Devonian: evidence from Nd isotope composition of conodonts. Geochem. Geophys. Geosyst. 10, Q03015 (2009).

  • Jakubowicz, M. et al. At the southern limits of the Devonian reef zone: palaeoecology of the Aferdou el Mrakib reef (Givetian, eastern Anti-Atlas, Morocco). Geol. J. 54, 10–38 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Oczlon, M. S. Ocean currents and unconformities: the North Gondwana Middle Devonian. Geology 18, 509–512 (1990).

    Article 
    ADS 

    Google Scholar
     

  • Burchette, T. P. in European Fossil Reef Models (ed. Toomey, D. F.) https://doi.org/10.2110/scn.83.02.0000 (SEPM Society for Sedimentary Geology, 1981).

  • Copper, P. Reef development at the Frasnian/Famennian mass extinction boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 181, 27–65 (2002).

    Article 

    Google Scholar
     

  • McGhee, G. R., Sheehan, P. M., Bottjer, D. J. & Droser, M. L. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr. Palaeoclimatol. Palaeoecol. 211, 289–297 (2004).

    Article 

    Google Scholar
     

  • Raup, D. M. & Sepkoski, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sallan, L. & Galimberti, A. K. Body-size reduction in vertebrates following the end-Devonian mass extinction. Science 350, 812–815 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zapalski, M. K., Nowicki, J., Jakubowicz, M. & Berkowski, B. Tabulate corals across the Frasnian/Famennian boundary: architectural turnover and its possible relation to ancient photosymbiosis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 487, 416–429 (2017).

    Article 

    Google Scholar
     

  • Percival, L. M. E. et al. Pulses of enhanced continental weathering associated with multiple Late Devonian climate perturbations: evidence from osmium-isotope compositions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 240–249 (2019).

    Article 

    Google Scholar
     

  • Zapalski, M. K. Evidence of photosymbiosis in Palaeozoic tabulate corals. Proc. R. Soc. B 281, 20132663 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blackall, L. L., Wilson, B. & van Oppen, M. J. H. Coral—the world’s most diverse symbiotic ecosystem. Mol. Ecol. 24, 5330–5347 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Tambutté, S. et al. Coral biomineralization: from the gene to the environment. J. Exp. Mar. Biol. Ecol. 408, 58–78 (2011).

    Article 

    Google Scholar
     

  • Macko, S. A., Fogel, M. L., Hare, P. E. & Hoering, T. C. Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem. Geol. 65, 79–92 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bada, J. L., Schoeninger, M. J. & Schimmelmann, A. Isotopic fractionation during peptide bond hydrolysis. Geochim. Cosmochim. Acta 53, 3337–3341 (1989).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ferrier‐Pagès, C. & Leal, M. C. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol. Evol. 9, 723–740 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Frankowiak, K. et al. Photosymbiosis and the expansion of shallow-water corals. Sci. Adv. 2, e1601122 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gannes, L. Z., O’Brien, D. M. & del Rio, C. M. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. Ecology 78, 1271–1276 (1997).

    Article 

    Google Scholar
     

  • Muscatine, L. & D’Elia, C. F. The uptake, retention, and release of ammonium by reef corals. Limnol. Oceanogr. 23, 725–734 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, X. T. et al. Isotopic composition of carbonate-bound organic nitrogen in deep-sea scleractinian corals: a new window into past biogeochemical change. Earth Planet. Sci. Lett. 400, 243–250 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, X. T. et al. Influence of open ocean nitrogen supply on the skeletal δ15N of modern shallow-water scleractinian corals. Earth Planet. Sci. Lett. 441, 125–132 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, X. T. et al. Isotopic composition of skeleton-bound organic nitrogen in reef-building symbiotic corals: a new method and proxy evaluation at Bermuda. Geochim. Cosmochim. Acta 148, 179–190 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Muscatine, L. et al. Stable isotopes (13C and 15N) of organic matrix from coral skeleton. Proc. Natl Acad. Sci. USA 102, 1525–1530 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auderset, A. et al. Enhanced ocean oxygenation during Cenozoic warm periods. Nature 609, 77–82 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kast, E. R. et al. Cenozoic megatooth sharks occupied extremely high trophic positions. Sci. Adv. 8, eabl6529 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kast, E. R. et al. Nitrogen isotope evidence for expanded ocean suboxia in the Early Cenozoic. Science 364, 386–389 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Martínez-García, A. et al. Laboratory assessment of the impact of chemical oxidation, mineral dissolution, and heating on the nitrogen isotopic composition of fossil-bound organic matter. Geochem. Geophys. Geosyst. 23, e2022GC010396 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Tornabene, C., Martindale, R. C., Wang, X. T. & Schaller, M. F. Detecting photosymbiosis in fossil scleractinian corals. Sci. Rep. 7, 9465 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. T. et al. Oceanic nutrient rise and the Late Miocene inception of Pacific oxygen-deficient zones. Proc. Natl Acad. Sci. USA 119, e2204986119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Campoy, A. N. et al. The origin and correlated evolution of symbiosis and coloniality in scleractinian corals. Front. Mar. Sci. 7, 461 (2020).

  • McFadden, C. S. et al. Phylogenomics, origin, and diversification of anthozoans (phylum Cnidaria). Syst. Biol. 70, 635–647 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Swart, P. K. Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth Sci. Rev. 19, 51–80 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Barbeitos, M. S., Romano, S. L. & Lasker, H. R. Repeated loss of coloniality and symbiosis in scleractinian corals. Proc. Natl Acad. Sci. USA 107, 11877–11882 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poty, E. Morphological limits to diversification of the rugose and tabulate corals. Palaeoworld 19, 389–400 (2010).

    Article 

    Google Scholar
     

  • Zapalski, M. K. & Berkowski, B. The Silurian mesophotic coral ecosystems: 430 million years of photosymbiosis. Coral Reefs 38, 137–147 (2019).

    Article 
    ADS 

    Google Scholar
     

  • LaJeunesse, T. et al. Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar. Ecol. Prog. Ser. 284, 147–161 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Król, J. J., Berkowski, B., Denayer, J. & Zapalski, M. K. Deducing photosymbiosis in extinct heliolitid corals. Coral Reefs 43, 91–105 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Reuter, M., Brachert, T. C. & Kroeger, K. F. Diagenesis of growth bands in fossil scleractinian corals: identification and modes of preservation. Facies 51, 146–159 (2005).

    Article 

    Google Scholar
     

  • Jakubowicz, M. et al. Stable isotope signatures of Middle Palaeozoic ahermatypic rugose corals – deciphering secondary alteration, vital fractionation effects, and palaeoecological implications. PLoS ONE 10, e0136289 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frankowiak, K., Mazur, M., Gothmann, A. M. & Stolarski, J. Diagenetic alteration of Triassic coral from the aragonite konservat-Lagerstätte in Alakir Çay, Turkey: implications for geochemical measurements. PALAIOS 28, 333–342 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Stanton, R. J. Jr Nutrient models for the development and location of ancient reefs. Geo.Alp 3, 191–206 (2006).


    Google Scholar
     

  • Algeo, T. J., Meyers, P. A., Robinson, R. S., Rowe, H. & Jiang, G. Q. Icehouse–greenhouse variations in marine denitrification. Biogeosciences 11, 1273–1295 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Percival, L. M. E. et al. Combined nitrogen-isotope and cyclostratigraphy evidence for temporal and spatial variability in Frasnian–Famennian environmental change. Geochem. Geophys. Geosyst. 23, e2021GC010308 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Martinez-Garcia, A. et al. Iron fertilization of the Subantarctic Ocean during the last Ice Age. Science 343, 1347–1350 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, H. et al. Impact of glacial/interglacial sea level change on the ocean nitrogen cycle. Proc. Natl Acad. Sci. USA 114, E6759–E6766 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ren, H. et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323, 244–248 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments. Paleoceanogr. Paleoclimatol. 27, e2012PA002321 (2012).

  • Straub, M. et al. Changes in North Atlantic nitrogen fixation controlled by ocean circulation. Nature 501, 200–203 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Studer, A. S. et al. Ice Age–Holocene similarity of foraminifera-bound nitrogen isotope ratios in the Eastern Equatorial Pacific. Paleoceanogr. Paleoclimatol. 36, e2020PA004063 (2021).

    Article 

    Google Scholar
     

  • Duprey, N. N. et al. Megacity development and the demise of coastal coral communities: evidence from coral skeleton δ15N records in the Pearl River estuary. Glob. Change Biol. 26, 1338–1353 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Conti-Jerpe, I. E. et al. Trophic strategy and bleaching resistance in reef-building corals. Sci. Adv. 6, eaaz5443 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Belka, Z. Conodont colour alteration patterns in Devonian rocks of the eastern Anti-Atlas, Morocco. J. Af. Earth Sci. (Middle East) 12, 417–428 (1991).

    Article 
    ADS 

    Google Scholar
     

  • Ebneth, S., Diener, A., Buhl, D. & Veizer, J. Strontium isotope systematics of conodonts: Middle Devonian, Eifel Mountains, Germany. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132, 79–96 (1997).

    Article 

    Google Scholar
     

  • Löw, M. et al. The initial phase of the Hönne Valley Reef at Binolen (northern Rhenish Massif, Middle Devonian). Palaeobio. Palaeoenv. https://doi.org/10.1007/s12549-022-00540-4 (2022).

    Article 

    Google Scholar
     

  • Radice, V. Z., Hoegh-Guldberg, O., Fry, B., Fox, M. D. & Dove, S. G. Upwelling as the major source of nitrogen for shallow and deep reef-building corals across an oceanic atoll system. Funct. Ecol. 33, 1120–1134 (2019).

    Article 

    Google Scholar
     

  • Baker, D. M., Webster, K. L. & Kim, K. Caribbean octocorals record changing carbon and nitrogen sources from 1862 to 2005. Glob. Change Biol. 16, 2701–2710 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Erler, D. V. et al. Nitrogen isotopic composition of organic matter from a 168 year-old coral skeleton: implications for coastal nutrient cycling in the Great Barrier Reef Lagoon. Earth Planet. Sci. Lett. 434, 161–170 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ren, H. et al. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356, 749–752 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Knapp, A. N., DiFiore, P. J., Deutsch, C., Sigman, D. M. & Lipschultz, F. Nitrate isotopic composition between Bermuda and Puerto Rico: implications for N2 fixation in the Atlantic Ocean. Global Biogeochem. Cycles 22, GB3014 (2008).

  • Marconi, D. et al. Tropical dominance of N2 fixation in the North Atlantic Ocean. Global Biogeochem. Cycles 31, 1608–1623 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cline, J. D. & Kaplan, I. R. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Mar. Chem. 3, 271–299 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Fripiat, F. et al. The impact of incomplete nutrient consumption in the Southern Ocean on global mean ocean nitrate δ15N. Global Biogeochem. Cycles 37, e2022GB007442 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fripiat, F. et al. Nitrogen isotopic constraints on nutrient transport to the upper ocean. Nat. Geosci. 14, 855–861 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Knapp, A. N., Sigman, D. M. & Lipschultz, F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site. Global Biogeochem. Cycles 19, GB1018 (2005).

  • Casciotti, K. L. Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim. Cosmochim. Acta 73, 2061–2076 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Marshall, T. A. et al. The Agulhas Current transports signals of local and remote Indian Ocean nitrogen cycling. J. Geophys. Res. Oceans 128, e2022JC019413 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Deutsch, C., Sarmiento, J. L., Sigman, D. M., Gruber, N. & Dunne, J. P. Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445, 163–167 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, Y. & Fu, Q. Observed poleward expansion of the Hadley circulation since 1979. Atmos. Chem. Phys. 7, 5229–5236 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lucas, C., Timbal, B. & Nguyen, H. The expanding tropics: a critical assessment of the observational and modeling studies. WIREs Clim. Change 5, 89–112 (2014).

    Article 

    Google Scholar
     

  • Brandes, J. A. & Devol, A. H. A global marine-fixed nitrogen isotopic budget: implications for Holocene nitrogen cycling. Global Biogeochem. Cycles 16, 1120 (2002).

  • Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scotese, C. R. Atlas of Earth History, Vol. 1, Paleogeography (PALEOMAP project, 2001).

  • Schlitzer, R. Ocean Data View v.5.7.2. https://odv.awi.de/ (2023).

  • Becker, R. et al. The Givetian–Frasnian Hönne Valley Reef Complex (northern Sauerland) – an outline of stratigraphy and facies development. Münster. Forsch. Geol. Paläont. 108, 126–140 (2016).


    Google Scholar
     

  • Schröder, S. & Salerno, C. Korallenfauna und Fazies givetischer Kalksteinabfolgen (Cürten-/Dreimühlen-Formation) der Dollendorfer Mulde (Devon, Rheinisches Schiefergebirge/Eifel). Senckenbergiana Lethaea 81, 111–133 (2001).

    Article 

    Google Scholar
     

  • Stadelmaier, M. et al. Ästige tabulate Korallen-Gemeinschaften aus dem Mitteldevon der Sötenicher Mulde (Eifel). Zitteliana B25, 5–38 (2005).

  • Ernst, A., Königshof, P., Taylor, P. D. & Bohatý, J. Microhabitat complexity—an example from Middle Devonian bryozoan-rich sediments in the Blankenheim Syncline (northern Eifel, Rheinisches Schiefergebirge). Palaeobiol. Palaeoenv. 91, 257–284 (2011).

    Article 

    Google Scholar
     

  • Wendt, J. Middle and Late Devonian paleogeography of the eastern Anti-Atlas (Morocco). Int. J. Earth Sci. (Geol. Rundsch.) 110, 1531–1544 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schindler, E. & Wehrmann, A. Genesis and internal architecture of the Middle to Upper Devonian Gwirat Al Hyssan reef-mound (Western Sahara). Palaeogeogr. Palaeoclimatol. Palaeoecol. 304, 184–193 (2011).

    Article 

    Google Scholar
     

  • Birenheide, R. Rugose Korallen des Devon Vol. 2 (Leitfossilien, 1978).

  • Birenheide, R. Chaetetida und tabulate Korallen des Devon Vol. 3 (Leitfossilien, 1985).

  • Schröder, S. Stratigraphie und Systematik rugoser Korallen aus dem Givetium und Unter-Frasnium des Rheinischen Schiefergebirges (Sauerland/Bergisches Land). Zitteliana B25, 39–116 (2005).

  • Ellison, S. The composition of conodonts. J. Paleontol. 18, 133–140 (1944).


    Google Scholar
     

  • Rejebian, V. A., Harris, A. G. & Huebner, J. S. Conodont color and textural alteration: an index to regional metamorphism, contact metamorphism, and hydrothermal alteration. Geol. Soc. Am. Bull. 99, 471–479 (1987).

  • Epstein, A. G., Epstein, J. B. & Harris, L. D. Conodont Color Alteration—an Index to Organic Metamorphism Professional Paper 995 (US Government Printing Office, 1977).

  • Nicoll, R. S. & Gorter, J. D. Conodont colour alteration, thermal maturation and the geothermal history of the Canning Basin, Western Australia. The APPEA Journal 24, 243–258 (1984).

    Article 

    Google Scholar
     

  • Legall, F. D., Barnes, C. R. & Macqueen, R. W. Thermal maturation, burial history and hotspot development, Paleozoic strata of southern Ontario-Quebec, from conodont and acritarch colour alteration studies. Bull. Can. Petrol. Geol. 29, 492–539 (1981).


    Google Scholar
     

  • Harris, A. G. et al. Conodont Color Alteration Index (CAI) Map and Conodont-based Age Determinations for the Winchester 30’ x 60’ Quadrangle and Adjacent Area, Virginia, West Virginia, and Maryland Series No. 2239 (US Geological Survey, 1994).

  • Helsen, S. & Königshof, P. Conodont thermal alteration patterns in Palaeozoic rocks from Belgium, northern France and western Germany. Geol. Mag. 131, 369–386 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Garcia-Lopez, S., Brime, C., Bastida, F. & Sarmiento, G. N. Simultaneous use of thermal indicators to analyse the transition from diagenesis to metamorphism: an example from the Variscan Belt of northwest Spain. Geol. Mag. 134, 323–334 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Sarmiento, G. N., García-lópez, S. & Bastida, F. Conodont colour alteration indices (CAI) of Upper Ordovician limestones from the Iberian Peninsula. Geol. Mijnbouw 77, 77–91 (1998).

    Article 

    Google Scholar
     

  • Lazreq, N. & Ali, B. Discovery of Upper Devonian conodonts and event stratigraphy from the Eastern Jebilet, Morocco. J. Afr. Earth. Sci. 196, 104699 (2022).

    Article 

    Google Scholar
     

  • Königshof, P. Der Farbänderungsindex von Conodonten (CAI) in paläozoischen Gesteinen (Mitteldevon bis Unterkarbon) des Rheinischen Schiefergebirges. Cour. Forsch. Inst. Senckenb. 146, 1–118 (1992).

  • Königshof, P. Deformationsstrukturen und texturelle Veränderung paläozoischer Conodonten: Beispiele aus Deutschland und Frankreich. Senckenbergiana Lethaea 83, 149–156 (2003).

    Article 

    Google Scholar
     

  • Raven, J. G. M. & Pluijm, B. A. V. D. Metamorphic fluids and transtension in the Cantabrian Mountains of northern Spain: an application of the conodont colour alteration index. Geol. Mag. 123, 673–681 (1986).

    Article 
    ADS 

    Google Scholar
     

  • Sigman, D. M. et al. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moretti, S. et al. Analytical improvements and assessment of long-term performance of the oxidation–denitrifier method. Rapid Commun. Mass Spectrom. https://doi.org/10.22541/au.168616993.39320235/v1 (2023).

  • Braman, R. S. & Hendrix, S. A. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715–2718 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Weigand, M. A., Foriel, J., Barnett, B., Oleynik, S. & Sigman, D. M. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 30, 1365–1383 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McGregor, H. V. & Gagan, M. K. Diagenesis and geochemistry of porites corals from Papua New Guinea: implications for paleoclimate reconstruction. Geochim. Cosmochim. Acta 67, 2147–2156 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Müller, A., Gagan, M. K. & McCulloch, M. T. Early marine diagenesis in corals and geochemical consequences for paleoceanographic reconstructions. Geophys. Res. Lett. 28, 4471–4474 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Sayani, H. R. et al. Effects of diagenesis on paleoclimate reconstructions from modern and young fossil corals. Geochim. Cosmochim. Acta 75, 6361–6373 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Swart, P. K. The geochemistry of carbonate diagenesis: the past, present and future. Sedimentology 62, 1233–1304 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Hendy, E. J., Gagan, M. K., Lough, J. M., McCulloch, M. & deMenocal, P. B. Impact of skeletal dissolution and secondary aragonite on trace element and isotopic climate proxies in porites corals. Paleoceanogr. Paleoclimatol. 22, e2007PA001462 (2007).

  • Hudson, J. D. Stable isotopes and limestone lithification. J. Geol. Soc. 133, 637–660 (1977).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stanley, G. D. & Swart, P. K. Evolution of the coral–zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21, 179–199 (1995).

    Article 

    Google Scholar
     

  • Munro, L. E., Longstaffe, F. J. & White, C. D. Effects of heating on the carbon and oxygen-isotope compositions of structural carbonate in bioapatite from modern deer bone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 142–150 (2008).

    Article 

    Google Scholar
     

  • Schrag, D. P., DePaolo, D. J. & Richter, F. M. Reconstructing past sea surface temperatures: correcting for diagenesis of bulk marine carbonate. Geochim. Cosmochim. Acta 59, 2265–2278 (1995).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Derrick, B. & White, P. Why Welch’s test is type I error robust. TQMP 12, 30–38 (2016).

    Article 

    Google Scholar
     

  • Ruxton, G. D. The unequal variance t-test is an underused alternative to Student’s t-test and the Mann–Whitney U test. Behav. Ecol. 17, 688–690 (2006).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments