Thursday, January 30, 2025
No menu items!
HomeNatureCopper-dependent halogenase catalyses unactivated C−H bond functionalization

Copper-dependent halogenase catalyses unactivated C−H bond functionalization

  • Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hong, B., Luo, T. & Lei, X. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Liu, B., Romine, A. M., Rubel, C. Z., Engle, K. M. & Shi, B.-F. Transition-metal-catalyzed, coordination-assisted functionalization of nonactivated C(sp3)–H bonds. Chem. Rev. 121, 14957–15074 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ren, X. & Fasan, R. Engineered and artificial metalloenzymes for selective C–H functionalization. Curr. Opin. Green Sustain. Chem. 31, 100494 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, F., Zhang, X. & Renata, H. Enzymatic C–H functionalizations for natural product synthesis. Curr. Opin. Chem. Biol. 49, 25–32 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C–C bond formation. Nat. Rev. Chem. 4, 334–346 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yang, Y. & Arnold, F. H. Navigating the unnatural reaction space: directed evolution of heme proteins for selective carbene and nitrene transfer. Acc. Chem. Res. 54, 1209–1225 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Latham, J., Brandenburger, E., Shepherd, S. A., Menon, B. R. K. & Micklefield, J. Development of halogenase enzymes for use in synthesis. Chem. Rev. 118, 232–269 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, Z. et al. Halogen bond: its role beyond drug-target binding affinity for drug discovery and development. J. Chem. Inf. Model. 54, 69–78 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Petrone, D. A., Ye, J. & Lautens, M. Modern transition-metal-catalyzed carbon–halogen bond formation. Chem. Rev. 116, 8003–8104 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Hegarty, E., Büchler, J. & Buller, R. M. Halogenases for the synthesis of small molecules. Curr. Opin. Green Sustain. Chem. 41, 100784 (2023).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Jiang, Y. & Lewis, J. C. Asymmetric catalysis by flavin-dependent halogenases. Chirality 35, 452–460 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duewel, S. et al. Directed evolution of an FeII-dependent halogenase for asymmetric C(sp3)−H chlorination. ACS Catal. 10, 1272–1277 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Vaillancourt, F. H., Yin, J. & Walsh, C. T. SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase. Proc. Natl Acad. Sci. USA 102, 10111–10116 (2005).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galonić, D. P., Vaillancourt, F. H. & Walsh, C. T. Halogenation of unactivated carbon centers in natural product biosynthesis: trichlorination of leucine during barbamide biosynthesis. J. Am. Chem. Soc. 128, 3900–3901 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Hillwig, M. L. & Liu, X. A new family of iron-dependent halogenases acts on freestanding substrates. Nat. Chem. Biol. 10, 921–923 (2014).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Neugebauer, M. E. et al. A family of radical halogenases for the engineering of amino-acid-based products. Nat. Chem. Biol. 15, 1009–1016 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Kim, C. Y. et al. The chloroalkaloid (−)-acutumine is biosynthesized via a Fe(II)- and 2-oxoglutarate-dependent halogenase in Menispermaceae plants. Nat. Commun. 11, 1867 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhao, C. et al. An Fe2+– and α-ketoglutarate-dependent halogenase acts on nucleotide substrates. Angew. Chem. Int. Ed. 59, 9478–9484 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Krebs, C. & Bollinger, J. M. Non-heme Fe (IV)–oxo intermediates. Acc. Chem. Res. 40, 484–492 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X. & Groves, J. T. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation. J. Biol. Inorg. Chem. 22, 185–207 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blasiak, L. C., Vaillancourt, F. H., Walsh, C. T. & Drennan, C. L. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis. Nature 440, 368–371 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, S. D. et al. Elucidation of the Fe(IV)=O intermediate in the catalytic cycle of the halogenase SyrB2. Nature 499, 320–323 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Matthews, M. L. et al. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase. Nat. Chem. Biol. 10, 209–215 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chan, N. H. et al. Non-native anionic ligand binding and reactivity in engineered variants of the Fe(II)- and α-ketoglutarate-dependent oxygenase SadA. Inorg. Chem. 61, 14477–14485 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gomez, C. A., Mondal, D., Du, Q., Chan, N. & Lewis, J. C. Directed evolution of an iron(II)- and α-ketoglutarate-dependent dioxygenase for site-selective azidation of unactivated aliphatic C−H bonds. Angew. Chem. Int. Ed. 62, e202301370 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Vennelakanti, V., Li, G. L. & Kulik, H. J. Why nonheme iron halogenases do not fluorinate C−H bonds: a computational investigation. Inorg. Chem. 62, 19758–19770 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Umemura, M. et al. Characterization of the biosynthetic gene cluster for the ribosomally synthesized cyclic peptide ustiloxin B in Aspergillus flavus. Fungal Genet. Biol. 68, 23–30 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, Y. et al. Unveiling the biosynthetic pathway of the ribosomally synthesized and post-translationally modified peptide ustiloxin B in filamentous fungi. Angew. Chem. Int. Ed. 55, 8072–8075 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Ye, Y. et al. Heterologous production of asperipin-2a: proposal for sequential oxidative macrocyclization by a fungi-specific DUF3328 oxidase. Org. Biomol. Chem. 17, 39–43 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kessler, S. C. et al. Victorin, the host-selective cyclic peptide toxin from the oat pathogen Cochliobolus victoriae, is ribosomally encoded. Proc. Natl Acad. Sci. USA 117, 24243–24250 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sogahata, K. et al. Biosynthetic studies of phomopsins unveil posttranslational installation of dehydroamino acids by UstYa family proteins. Angew. Chem. Int. Ed. 60, 25729–25734 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, Y. et al. Biosynthesis of cyclochlorotine: identification of the genes involved in oxidative transformations and intramolecular O, N-transacylation. Org. Lett. 23, 2616–2620 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Bat-Erdene, U. et al. Iterative catalysis in the biosynthesis of mitochondrial complex II inhibitors harzianopyridone and atpenin B. J. Am. Chem. Soc. 142, 8550–8554 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Nagano, N. et al. Class of cyclic ribosomal peptide synthetic genes in filamentous fungi. Fungal Genet. Biol. 86, 58–70 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Umemura, M., Kuriiwa, K., Tamano, K. & Kawarabayasi, Y. Ustiloxin biosynthetic machinery is not compatible between Aspergillus flavus and Ustilaginoidea virens. Fungal Genet. Biol. 143, 103434 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kessler, S. C. & Chooi, Y. H. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi. Nat. Prod. Rep. 39, 222–230 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jasniewski, A. J. & Que, L. Dioxygen activation by nonheme diiron enzymes: diverse dioxygen adducts, high-valent intermediates, and related model complexes. Chem. Rev. 118, 2554–2592 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Von Wachenfeldt, C., Richardson, T. H., Cosme, J. & Johnson, E. F. Microsomal P450 2C3 is expressed as a soluble dimer in Escherichia coli following modifications of its N-terminus. Arch. Biochem. Biophys. 339, 107–114 (1997).

    Article 

    Google Scholar
     

  • Otsuka, T., Takase, S., Terano, H. & Okuhara, M. New angiogenesis inhibitors, WF-16775 A1 and A2. J. Antibiot. 45, 1970–1973 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Kawada, M., Momose, I., Someno, T., Tsujiuchi, G. & Ikeda, D. New atpenins, NBRI23477 A and B, inhibit the growth of human prostate cancer cells. J. Antibiot. 62, 243–246 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Prigge, S. T., Kolhekar, A. S., Eipper, B. A., Mains, R. E. & Mario Amzel, L. Substrate-mediated electron transfer in peptidylglycine α-hydroxylating monooxygenase. Nat. Struct. Biol. 6, 976–983 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klinman, J. P. The copper-enzyme family of dopamine β-monooxygenase and peptidylglycine α-hydroxylating monooxygenase: Resolving the chemical pathway for substrate hydroxylation. J. Biol. Chem. 281, 3013–3016 (2006).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Matthews, M. L. et al. Substrate positioning controls the partition between halogenation and hydroxylation in the aliphatic halogenase, SyrB2. Proc. Natl Acad. Sci. USA 106, 17723–17728 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, H. R., Masento, M. S., Taylor, G. W., Jermyn, K. A. & Kay, R. R. Structure elucidation of two differentiation inducing factors (DIF-2 and DIF-3) from the cellular slime mould Dictyostelium discoideum. Biochem. J 249, 903–906 (1988).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lima, D. B. et al. Characterization of homodimer interfaces with cross-linking mass spectrometry and isotopically labeled proteins. Nat. Protoc. 13, 431–458 (2018).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Peisach, J. & Blumberg, W. E. Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins. Arch. Biochem. Biophys. 165, 691–708 (1974).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Prigge, S. T., Eipper, B. A., Mains, R. E. & Amzel, L. M. Dioxygen binds end-on to mononuclear copper in a precatalytic enzyme complex. Science 304, 864–867 (2004).

  • Mydy, L. S. et al. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis. Nat. Chem. Biol. 20, 530–540 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, P. et al. Theory demonstrated a ‘coupled’ mechanism for O2 activation and substrate hydroxylation by binuclear copper monooxygenases. J. Am. Chem. Soc. 141, 19776–19789 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gkotsi, D. S. et al. A marine viral halogenase that iodinates diverse substrates. Nat. Chem. 11, 1091–1097 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jiang, Y., Kim, A., Olive, C. & Lewis, J. C. Selective C–H halogenation of alkenes and alkynes using flavin‐dependent halogenases. Angew. Chem. Int. Ed. 63, e2023178 (2024).


    Google Scholar
     

  • Zhao, Q. et al. Engineering nonhaem iron enzymes for enantioselective C(sp3)−F bond formation via radical fluorine transfer. Nat. Synth. 3, 958–966 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhao, L.-P. et al. Biocatalytic enantioselective C(sp3)–H fluorination enabled by directed evolution of non-haem iron enzymes. Nat. Synth. 3, 967–975 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Omura, S. et al. Atpenins, new antifungal antibiotics produced by Penicillium sp. production, isolation, physico-chemical and biological properties. J. Antibiot. 41, 1769–1773 (1988).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Kumagai, H. et al. The structures of atpenins A4, A5 and B, new antifungal antibiotics produced by Penicillium sp. J. Antibiot. 43, 1553–1558 (1990).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Wittig, I., Braun, H. P. & Schägger, H. Blue native PAGE. Nat. Protoc. 1, 418–428 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marty, M. T. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal. Chem. 87, 4370–4376 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lu, S. et al. Mapping native disulfide bonds at a proteome scale. Nat. Methods 12, 329–331 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chaudhury, S., Lyskov, S. & Gray, J. J. PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26, 689–691 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Petasis, D. T. & Hendrich, M. P. Quantitative Interpretation of multifrequency multimode EPR spectra of metal containing proteins, enzymes, and biomimetic complexes. Methods Enzymol. 563, 171–208 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments