Sunday, March 23, 2025
No menu items!
HomeNatureCooper-pair density modulation state in an iron-based superconductor

Cooper-pair density modulation state in an iron-based superconductor

  • Fulde, P. & Ferrell, R. A. Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550 (1964).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Larkin, A. I. & Ovchinnikov, Y. N. Nonuniform state of superconductors. Zh. Eksp. Teor. Fiz. 47, 1136–1146 (1964).

    CAS 
    MATH 

    Google Scholar
     

  • Himeda, A., Kato, T. & Ogata, M. Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional tt′–J model. Phys. Rev. Lett. 88, 117001 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Berg, E. et al. Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett. 99, 127003 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lee, P. A. Amperean pairing and the pseudogap phase of cuprate superconductors. Phys. Rev. X 4, 031017 (2014).

    CAS 

    Google Scholar
     

  • Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Agterberg, D. F. et al. The physics of pair-density waves: cuprate superconductors and beyond. Annu. Rev. Condens. Matter Phys. 11, 231–270 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Hamidian, M. et al. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature 532, 343–347 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ruan, W. et al. Visualization of the periodic modulation of Cooper pairing in a cuprate superconductor. Nat. Phys. 14, 1178–1182 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Du, Z. et al. Imaging the energy gap modulations of the cuprate pair-density-wave state. Nature 580, 65–70 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, X., Chong, Y. X., Sharma, R. & Davis, J. S. Discovery of a Cooper-pair density wave state in a transition-metal dichalcogenide. Science 372, 1447–1452 (2021).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Chen, H. et al. Roton pair density wave in a strong-coupling kagome superconductor. Nature 599, 222–228 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wang, S. et al. Scattering interference signature of a pair density wave state in the cuprate pseudogap phase. Nat. Commun. 12, 6087 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Chen, W. et al. Identification of a nematic pair density wave state in Bi2Sr2CaCu2O8+x. Proc. Natl Acad. Sci. USA 119, e2206481119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gu, Q. et al. Detection of a pair density wave state in UTe2. Nature 618, 921–927 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhao, H. et al. Smectic pair-density-wave order in EuRbFe4As4. Nature 618, 940–945 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Liu, Y. et al. Pair density wave state in a monolayer high-Tc iron-based superconductor. Nature 618, 934–939 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Wei, L.-X. et al. Discovery of smectic charge and pair-density-wave orders in topological monolayer 1T′-MoTe2. Preprint at https://arxiv.org/abs/2308.11101 (2023).

  • Schwemmer, T. et al. Sublattice modulated superconductivity in the kagome Hubbard model. Phys. Rev. B 110, 024501 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Fernandes, R. M. et al. Iron pnictides and chalcogenides: a new paradigm for superconductivity. Nature 601, 35–44 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fernandes, R., Chubukov, A. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Yin, Z., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Mater. 10, 932–935 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Checkelsky, J. G., Bernevig, B. A., Coleman, P., Si, Q. & Paschen, S. Flat bands, strange metals and the Kondo effect. Nat. Rev. Mater. 9, 509–526 (2024).

    Article 

    Google Scholar
     

  • Lubashevsky, Y., Lahoud, E., Chashka, K., Podolsky, D. & Kanigel, A. Shallow pockets and very strong coupling superconductivity in FeSexTe1−x. Nat. Phys. 8, 309–312 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Shibauchi, T., Hanaguri, T. & Matsuda, Y. Exotic superconducting states in FeSe-based materials. J. Phys. Soc. Jpn 89, 102002 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181–1187 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Hanaguri, T., Niitaka, S., Kuroki, K. & Takagi, H. Unconventional s-wave superconductivity in Fe(Se,Te). Science 328, 474–476 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Z. et al. Evidence for dispersing 1D Majorana channels in an iron-based superconductor. Science 367, 104–108 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tang, F. et al. Quasi-2D superconductivity in FeTe0.55Se0.45 ultrathin film. J. Phys. Condens. Matter 31, 265702 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Morfoot, A. B. et al. Resurgence of superconductivity and the role of dxy hole band in FeSe1xTex. Commun. Phys. 6, 362 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, M. et al. Direct visualization of sign-reversal s± superconducting gaps in FeTe0.55Se0.45. Phys. Rev. B 99, 014507 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Cho, D., Bastiaans, K., Chatzopoulos, D., Gu, G. & Allan, M. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 571, 541–545 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lawler, M. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fujita, K. et al. Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates. Proc. Natl Acad. Sci. USA 111, E3026–E3032 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Böhmer, A. E., Chu, J.-H., Lederer, S. & Yi, M. Nematicity and nematic fluctuations in iron-based superconductors. Nat. Phys. 18, 1412–1419 (2022).

    Article 
    MATH 

    Google Scholar
     

  • Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ronning, F. et al. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5. Nature 548, 313–317 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jiang, K. et al. Kagome superconductors AV3Sb5 (A = K, Rb, Cs). Natl Sci. Rev. 10, nwac199 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, J. et al. Reemergeing electronic nematicity in heavily hole-doped Fe-based superconductors. Preprint at https://arxiv.org/abs/1611.04694 (2016).

  • Liu, X. et al. Evidence of nematic order and nodal superconducting gap along [110] direction in RbFe2As2. Nat. Commun. 10, 1039 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ishida, K. et al. Novel electronic nematicity in heavily hole-doped iron pnictide superconductors. Proc. Natl Acad. Sci. USA 117, 6424–6429 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wei, T. et al. Observation of superconducting pair density modulation within lattice unit cell. Chin. Phys. Lett. 42, 027404 (2025).

  • Zhang, Y., Yang, L., Liu, C., Zhang, W. & Fu, Y.-S. Visualizing uniform lattice-scale pair density wave in single-layer FeSe/SrTiO3 films. Preprint at https://arxiv.org/abs/2406.05693 (2024).

  • Wen, J. et al. Short-range incommensurate magnetic order near the superconducting phase boundary in Fe1+δTe1−xSex. Phys. Rev. B 80, 104506 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Ishida, K. et al. Pure nematic quantum critical point accompanied by a superconducting dome. Proc. Natl Acad. Sci. USA 119, e2110501119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hou, Q., Sun, L., Sun, Y. & Shi, Z. Review of single crystal synthesis of 11 iron-based superconductors. Materials 16, 4895 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kuo, H.-H., Chu, J.-H., Palmstrom, J. C., Kivelson, S. A. & Fisher, I. R. Ubiquitous signatures of nematic quantum criticality in optimally doped Fe-based superconductors. Science 352, 958–962 (2016).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Zhao, H. et al. Nematic transition and nanoscale suppression of superconductivity in Fe(Te,Se). Nat. Phys. 17, 903–908 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Agterberg, D. & Tsunetsugu, H. Dislocations and vortices in pair-density-wave superconductors. Nat. Phys. 4, 639–642 (2008).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Berg, E., Fradkin, E. & Kivelson, S. A. Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors. Nat. Phys. 5, 830–833 (2009).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Radzihovsky, L. & Vishwanath, A. Quantum liquid crystals in an imbalanced Fermi gas: fluctuations and fractional vortices in Larkin-Ovchinnikov states. Phys. Rev. Lett. 103, 010404 (2009).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mross, D. F. & Senthil, T. Spin- and pair-density-wave glasses. Phys. Rev. X 5, 031008 (2015).

    MATH 

    Google Scholar
     

  • Aishwarya, A. et al. Melting of the charge density wave by generation of pairs of topological defects in UTe2. Nat. Phys. 20, 964–969 (2024).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • Prozorov, R. et al. Intrinsic pinning on structural domains in underdoped single crystals of Ba(Fe1−xCox)2As2. Phys. Rev. B 80, 174517 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Rößler, S. et al. Nematic state of the FeSe superconductor. Phys. Rev. B 105, 064505 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Jenkins, N. et al. Imaging the essential role of spin fluctuations in high-Tc superconductivity. Phys. Rev. Lett. 103, 227001 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Devarakonda, A. et al. Evidence of striped electronic phases in a structurally modulated superlattice. Nature 631, 526–530 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Gao, Z.-Q., Lin, Y.-P. & Lee, D.-H. Pair-breaking scattering interference as a mechanism for superconducting gap modulation. Phys. Rev. B 110, 224509 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Kong, L. et al. Dataset: Cooper-pair density modulation state in an iron-based superconductor. Zenodo https://doi.org/10.5281/zenodo.14523285 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments