Thursday, November 13, 2025
No menu items!
HomeNatureConvergent genome evolution shaped the emergence of terrestrial animals

Convergent genome evolution shaped the emergence of terrestrial animals

  • Kenrick, P., Wellman, C. H., Schneider, H. & Edgecombe, G. D. A timeline for terrestrialization: consequences for the carbon cycle in the Palaeozoic. Philos. Trans. R. Soc. Lond. B. 367, 519–536 (2012).

    Article 

    Google Scholar
     

  • Selden, P. A. Encyclopedia of Life Sciences: Terrestrialization (Precambrian–Devonian) (John Wiley & Sons, 2005).

  • Brusca, R. C., Giribet, G. & Moore, W. Invertebrates, 4th edn (Oxford Univ. Press, 2023).

  • Ashley-Ross, M. A., Hsieh, S. T., Gibb, A. C. & Blob, R. W. Vertebrate land invasions-past, present, and future: an introduction to the symposium. Integr. Comp. Biol. 53, 192–196 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lozano-Fernandez, J. et al. A molecular palaeobiological exploration of arthropod terrestrialization. Philos. Trans. R. Soc. Lond. B 371, 20150133 (2016).

  • Barker, G. M. Naturalised terrestrial Stylommatophora (Mollusca: Gastropoda). Fauna N. Z. https://doi.org/10.7931/J2/FNZ.38 (1999).

  • Mobjerg, N. et al. Survival in extreme environments—on the current knowledge of adaptations in tardigrades. Acta Physiol. 202, 409–420 (2011).

    Article 

    Google Scholar
     

  • Menter, D. G. et al. Of vascular defense, hemostasis, cancer, and platelet biology: an evolutionary perspective. Cancer Metastasis Rev. 41, 147–172 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter, M. J., Cortes, P. A. & Rezende, E. L. Temperature variability and metabolic adaptation in terrestrial and aquatic ectotherms. J. Therm. Biol 115, 103565 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Nilsson, D. E. Evolution: an irresistibly clear view of land. Curr. Biol. 27, R715–R717 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Paps, J. & Holland, P. W. H. Reconstruction of the ancestral metazoan genome reveals an increase in genomic novelty. Nat. Commun. 9, 1730 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez, R. & Gabaldon, T. Gene gain and loss across the metazoan tree of life. Nat. Ecol. Evol. 4, 524–533 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guijarro-Clarke, C., Holland, P. W. H. & Paps, J. Widespread patterns of gene loss in the evolution of the animal kingdom. Nat. Ecol. Evol. 4, 519–523 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Martinez-Redondo, G. I. et al. Parallel duplication and loss of aquaporin-coding genes during the “out of the sea” transition as potential key drivers of animal terrestrialization. Mol. Ecol. 32, 2022–2040 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Aristide, L. & Fernández, R. Genomic insights into mollusk terrestrialization: parallel and convergent gene family expansions as key facilitators in out-of-the-sea transitions. Genome Biol. Evol. 15, evad176 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, G. W. C. et al. Gene content evolution in the arthropods. Genome Biol. 21, 15 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balart-Garcia, P. et al. Parallel and convergent genomic changes underlie independent subterranean colonization across beetles. Nat. Commun. 14, 3842 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vargas-Chavez, C. et al. An episodic burst of massive genomic rearrangements and the origin of non-marine annelids. Nat. Ecol. Evol. 9, 1263–1279 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Bowles, A. M. C., Bechtold, U. & Paps, J. The origin of land plants is rooted in two bursts of genomic novelty. Curr. Biol. 30, 530–536 e2 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • WoRMS Editorial Board. World Register of Marine Species (WoRMS) (Flanders Marine Institute, 2024); https://www.marinespecies.org.

  • Fernández, R., Gabaldon, T. & Dessimoz, C. Phylogenetics in the Genomic Era: Orthology: Definitions, Prediction, and Impact on Species Phylogeny Inference (2020).

  • Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 36, 5516–5518 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Natsidis, P., Kapli, P., Schiffer, P. H. & Telford, M. J. Systematic errors in orthology inference and their effects on evolutionary analyses. iScience 24, 102110 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koonin, E. V. & Wolf, Y. I. Constraints and plasticity in genome and molecular-phenome evolution. Nat. Rev. Genet. 11, 487–498 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Gene Ontology Consortium The Gene Ontology knowledgebase in 2023. Genetics 224, iyad031 (2023).

    Article 

    Google Scholar
     

  • Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Steger, A. et al. The evolution of plant proton pump regulation via the R domain may have facilitated plant terrestrialization. Commun. Biol. 5, 1312 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guna, A., Volkmar, N., Christianson, J. C. & Hegde, R. S. The ER membrane protein complex is a transmembrane domain insertase. Science 359, 470–473 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Thiel, M. & Watling, L. Lifestyles and Feeding Biology: The Natural History of the Crustacea (Oxford Univ. Press, 2015).

  • Snyder, M. J. Cytochrome P450 enzymes in aquatic invertebrates: recent advances and future directions. Aquat. Toxicol. 48, 529–547 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Naumann, C., Hartmann, T. & Ober, D. Evolutionary recruitment of a flavin-dependent monooxygenase for the detoxification of host plant-acquired pyrrolizidine alkaloids in the alkaloid-defended arctiid moth Tyria jacobaeae. Proc. Natl Acad. Sci. USA 99, 6085–6090 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, R., Seim, I., Ren, W., Xu, S. & Yang, G. Contraction of the ROS scavenging enzyme glutathione S-transferase gene family in cetaceans. G3 9, 2303–2315 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weis, W. I. & Kobilka, B. K. The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87, 897–919 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sakai, Y. et al. The integrin signaling network promotes axon regeneration via the Src–Ephexin–RhoA GTPase signaling axis. J. Neurosci. 41, 4754–4767 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • You, J. S. et al. ARHGEF3 regulates skeletal muscle regeneration and strength through autophagy. Cell Rep. 34, 108731 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nakamura, M., Verboon, J. M. & Parkhurst, S. M. Prepatterning by RhoGEFs governs Rho GTPase spatiotemporal dynamics during wound repair. J. Cell Biol. 216, 3959–3969 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuchiya, T. et al. Cloning of chlorophyllase, the key enzyme in chlorophyll degradation: finding of a lipase motif and the induction by methyl jasmonate. Proc. Natl Acad. Sci. USA 96, 15362–15367 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Orth, M. et al. Shugoshin is a Mad1/Cdc20-like interactor of Mad2. EMBO J. 30, 2868–2880 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bradley, T. J. Terrestrial Animals: Animal Osmoregulation (Oxford Univ. Press, 2008).

  • Bowman, K. G. & Bertozzi, C. R. Carbohydrate sulfotransferases: mediators of extracellular communication. Chem. Biol. 6, R9–R22 (1999).

    Article 
    PubMed 

    Google Scholar
     

  • Reiter, R. J. The melatonin rhythm: both a clock and a calendar. Experientia 49, 654–664 (1993).

    Article 
    PubMed 

    Google Scholar
     

  • Stout, J. The terrestrial plankton. Tuatara 11, 57 (1963).


    Google Scholar
     

  • Kameda, Y. & Kato, M. Terrestrial invasion of pomatiopsid gastropods in the heavy-snow region of the Japanese Archipelago. BMC Evol. Biol. 11, 118 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Locke, M. Secretion of wax through the cuticle of insects. Nature 184, 1967–1967 (1959).

    Article 

    Google Scholar
     

  • Wang, T. & Montell, C. Rhodopsin formation in Drosophila is dependent on the PINTA retinoid-binding protein. J. Neurosci. 25, 5187–5194 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lillywhite, H. B. Water relations of tetrapod integument. J. Exp. Biol. 209, 202–226 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Riera Romo, M., Perez-Martinez, D. & Castillo Ferrer, C. Innate immunity in vertebrates: an overview. Immunology 148, 125–139 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. USA 115, E2274–E2283 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carlisle, E., Yin, Z., Pisani, D. & Donoghue, P. C. J. Ediacaran origin and Ediacaran–Cambrian diversification of Metazoa. Sci. Adv. 10, eadp7161 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Qing, X. et al. Phylogenomic insights into the evolution and origin of nematoda. Syst. Biol. 74, 349–358 (2025).

    Article 
    PubMed 

    Google Scholar
     

  • Mitchell, R. L. et al. Cryptogamic ground covers as analogues for early terrestrial biospheres: initiation and evolution of biologically mediated proto-soils. Geobiology 19, 292–306 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kearsey, T. I. et al. The terrestrial landscapes of tetrapod evolution in earliest Carboniferous seasonal wetlands of SE Scotland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 457, 52–69 (2016).

    Article 

    Google Scholar
     

  • Selles Vidal, L., Kelly, C. L., Mordaka, P. M. & Heap, J. T. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application. Biochim. Biophys. Acta 1866, 327–347 (2018).

    Article 

    Google Scholar
     

  • Benton, M. J., Wilf, P. & Sauquet, H. The angiosperm terrestrial revolution and the origins of modern biodiversity. New Phytol. 233, 2017–2035 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Alibardi, L. Regeneration among animals: an evolutionary hypothesis related to aquatic versus terrestrial environment. Dev. Biol. 501, 74–80 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lozano-Fernandez, J. et al. Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nat. Commun. 10, 2295 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ballesteros, J. A. & Sharma, P. P. A critical appraisal of the placement of Xiphosura (Chelicerata) with account of known sources of phylogenetic error. Syst. Biol. 68, 896–917 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Martínez-Redondo, G. I. et al. FANTASIA leverages language models to decode the functional dark proteome across the animal tree of life. Commun. Biol. 8, 1227 (2025).

  • Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33, 2938–2940 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Supek, F., Bošnjak, M., Škunca, N. & Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6, e21800 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • UniProt, C. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).

    Article 

    Google Scholar
     

  • Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information in 2023. Nucleic Acids Res. 51, D29–D38 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933–D941 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Manni, M., Berkeley, M. R., Seppey, M., Simao, F. A. & Zdobnov, E. M. BUSCO update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38, 4647–4654 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laumer, C. E. et al. Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc. Biol. Sci. 286, 20190831 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pett, W. et al. The role of homology and orthology in the phylogenomic analysis of metazoan gene content. Mol. Biol. Evol. 36, 643–649 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Redmond, A. K. & McLysaght, A. Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat. Commun. 12, 1783 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simion, P. et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. 27, 958–967 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuck, P. & Longo, G. C. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 11, 81 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bealer, K. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Cantalapiedra, C. P., Hernandez-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, P. D. et al. PANTHER: Making genome-scale phylogenetics accessible to all. Protein Sci. 31, 8–22 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Alvarez-Carretero, S. et al. A species-level timeline of mammal evolution integrating phylogenomic data. Nature 602, 263–267 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Álvarez-Carretero, S., Kapli, P. & Yang, Z. Beginner’s guide on the use of PAML to detect positive selection. Mol. Biol. Evol. 40, msad041 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics Using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments