Thursday, November 13, 2025
No menu items!
HomeNatureControlling pyramidal nitrogen chirality by asymmetric organocatalysis

Controlling pyramidal nitrogen chirality by asymmetric organocatalysis

  • Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of quaternary carbon stereocentres. Nature 516, 181–191 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Zeng, X.-P., Cao, Z.-Y., Wang, Y.-H., Zhou, F. & Zhou, J. Catalytic enantioselective desymmetrization reactions to all-carbon quaternary stereocenters. Chem. Rev. 116, 7330–7396 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, J., Holmes, M. & Krische, M. J. Acyclic quaternary carbon stereocenters via enantioselective transition metal catalysis. Chem. Rev. 117, 12564–12580 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. & Wang, P. Silicon-stereogenic monohydrosilane: synthesis and applications. Angew. Chem. Int. Ed. 61, e202205382 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Xu, L.-W., Li, L., Lai, G.-Q. & Jiang, J.-X. The recent synthesis and application of silicon-stereogenic silanes: a renewed and significant challenge in asymmetric synthesis. Chem. Soc. Rev. 40, 1777–1790 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grabulosa, A., Granell, J. & Muller, G. Preparation of optically pure P-stereogenic trivalent phosphorus compounds. Coord. Chem. Rev. 251, 25–90 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Dutartre, M., Bayardon, J. & Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 45, 5771–5794 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fernández, I. & Khiar, N. Recent developments in the synthesis and utilization of chiral sulfoxides. Chem. Rev. 103, 3651–3706 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Han, J., Soloshonok, V. A., Klika, K. D., Drabowicz, J. & Wzorek, A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem. Soc. Rev. 47, 1307–1350 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walsh, M. P., Phelps, J. M., Lennon, M. E., Yufit, D. S. & Kitching, M. O. Enantioselective synthesis of ammonium cations. Nature 597, 70–76 (2021).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Luo, Z. et al. Ionic hydrogen bond-assisted catalytic construction of nitrogen stereogenic center via formal desymmetrization of remote diols. Angew. Chem. Int. Ed. 63, e202404979 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Bhadra, S. & Yamamoto, H. Catalytic asymmetric synthesis of N-chiral amine oxides. Angew. Chem. Int. Ed. 55, 13043–13046 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chattopadhyay, A. K. & Hanessian, S. Recent progress in the chemistry of daphniphyllum alkaloids. Chem. Rev. 117, 4104–4146 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, R. et al. The first direct synthesis of chiral Tröger’s bases catalyzed by chiral glucose-containing pyridinium ionic liquids. Chem. Eng. J. 316, 1026–1034 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Huang, S. et al. Organocatalytic enantioselective construction of chiral azepine skeleton bearing multiple-stereogenic elements. Angew. Chem. Int. Ed. 60, 21486–21493 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ma, C., Sun, Y., Yang, J., Guo, H. & Zhang, J. Catalytic asymmetric synthesis of Tröger’s base analogues with nitrogen stereocenter. ACS Cent. Sci. 9, 64–71 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, T. et al. Immobilizing stereogenic nitrogen center in doubly fused triarylamines through palladium-catalyzed asymmetric C−H activation/seven-membered-ring formation. ACS Catal. 13, 9688–9694 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Annunziata, R., Fornasier, R. & Montanari, F. Compounds with molecular asymmetry due solely to a tercovalent non-bridgehead nitrogen atom: optically active N-chloro-2,2-diphenylaziridine. J. Chem. Soc. Chem. Commun. 1972, 1133–1134 (1972).

    Article 

    Google Scholar
     

  • Forni, A., Moretti, I., Prosyanik, A. V. & Torre, G. Optically active trifluoromethylcarbinols as chiral solvating agents for asymmetric transformations at a ring-nitrogen atom. J. Chem. Soc. Chem. Commun. 1981, 588–590 (1981).

    Article 

    Google Scholar
     

  • Bucciarelli, M., Forni, A., Moretti, I. & Torre, G. Optically active trifluoromethylcarbinols as chiral solvating agents for asymmetric transformations at a ring-nitrogen atom. Synthesis of optically active N-chloroaziridines and stereochemical aspects of chiral solvent-aziridine solute complexes. J. Org. Chem. 48, 2640–2644 (1983).

    Article 
    CAS 

    Google Scholar
     

  • Shustov, G. V. et al. Asymmetric nitrogen. 72. Geminal systems. 46. N-chlorooxaziridines: optical activation, absolute configuration, and chiroptical properties. J. Am. Chem. Soc. 111, 4210–4215 (1989).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Montanari, F., Moretti, I. & Torre, G. Asymmetric introduction at trivalent nitrogen. Optically active 2-methyl-3,3-diphenyloxaziridine, a compound with molecular asymmetry due solely to the nitrogen atom. Chem. Commun. 1968, 1694–1695 (1968).


    Google Scholar
     

  • Boyd, D. R. Optically active oxaziridines. Tetrahedron Lett. 9, 4561–4564 (1968).

    Article 

    Google Scholar
     

  • Kostyanovsky, R. G., Rudchenko, V. F., Shtamburg, V. G., Chervin, I. I. & Nasibov, S. S. Asymmetrical nonbridgehead nitrogen—XXVI. Synthesis, configurational stability, and resolution of N,N-dialkoxyamines into antipodes. Tetrahedron 37, 4245–4254 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Smith, O. et al. Control of stereogenic oxygen in a helically chiral oxonium ion. Nature 615, 430–435 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Porto, C. M., de Barros, G. A., Santana, L. C., Moralles, A. C. & Morgon, N. H. Ammonia quantum tunneling in cold rare-gas He and Ar clusters and factorial design approach for methodology evaluation. J. Mol. Model. 28, 293 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Adams, R. & Cairns, T. L. Attempts to prepare optically active ethyleneimine derivatives containing an asymmetric nitrogen atom. J. Am. Chem. Soc. 61, 2464–2467 (1939).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Dunlop, H. G. & Tucker, S. H. Attempts to prepare optically active tervalent nitrogen compounds. Part I. Syntheses of 1:9-phenylenecarbazole and derivatives. J. Chem. Soc. 1939, 1945–1956 (1939).

    Article 

    Google Scholar
     

  • Brois, S. J. Aziridines. XII. Isolation of a stable nitrogen pyramid. J. Am. Chem. Soc. 90, 508–509 (1968).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Rauk, A., Allen, L. C. & Mislow, K. Pyramidal inversion. Angew. Chem. Int. Ed. 9, 400–414 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Zaitseva, S. & Köhler, V. Pyramidal stereogenic nitrogen centers (SNCs). Synthesis 57, 1237–1254 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Shtamburg, V. G. et al. Reactions of N-chloro-N-alkoxy-tert-alkylamines with isobutylene and methanol. Russ. Chem. Bull. 40, 951–954 (1991).

    Article 

    Google Scholar
     

  • Rudchenko, V. F. & Kostyanovskii, R. G. Geminal oxygen–nitrogen–halogen systems. N-halohydroxylamine derivatives. Russ. Chem. Rev. 67, 179–192 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Singh, V. K. et al. Taming secondary benzylic cations in catalytic asymmetric SN1 reactions. Science 382, 325–329 (2023).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zhang, X. et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction. Science 363, 400–404 (2019).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lovinger, G. J., Sak, M. H. & Jacobsen, E. N. Catalysis of an SN2 pathway by geometric preorganization. Nature 632, 1052–1059 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Denmark, S. E., Kuester, W. E. & Burk, M. T. Catalytic, asymmetric halofunctionalization of alkenes—a critical perspective. Angew. Chem. Int. Ed. 51, 10938–10953 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Akiyama, T., Itoh, J., Yokota, K. & Fuchibe, K. Enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Uraguchi, D. & Terada, M. Chiral Brønsted acid-catalyzed direct Mannich reactions via electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Akiyama, T. Stronger Brønsted acids. Chem. Rev. 107, 5744–5758 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reisman, S. E., Doyle, A. G. & Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Banik, S. M., Levina, A., Hyde, A. M. & Jacobsen, E. N. Lewis acid enhancement by hydrogen-bond donors for asymmetric catalysis. Science 358, 761–764 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Zhou, H. et al. Organocatalytic stereoselective cyanosilylation of small ketones. Nature 605, 84–89 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Wang, M. et al. Asymmetric hydrogenation of ketimines with minimally different alkyl groups. Nature 631, 556–562 (2024).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16, Revision A.03 (Gaussian, 2016).

  • Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    PubMed 
    ADS 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 
    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction‐activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Duan, M. et al. Chiral phosphoric acid catalyzed conversion of epoxides into thiiranes: mechanism, stereochemical model, and new catalyst design. Angew. Chem. Int. Ed. 61, e202113204 (2022).

    Article 
    CAS 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments