Thursday, January 30, 2025
No menu items!
HomeNatureContrasting drought sensitivity of Eurasian and North American grasslands

Contrasting drought sensitivity of Eurasian and North American grasslands

  • Smith, M. D. et al. Extreme drought impacts have been underestimated in grasslands and shrublands globally. Proc. Natl Acad. Sci. USA 121, e2309881120 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, Q. et al. Legacy effects of extreme drought and wetness events on mountain grassland ecosystems and their elevation dependence. J. Hydrol. 630, 130757 (2024).

    Article 

    Google Scholar
     

  • Xu, C. et al. Resistance and resilience of a semi-arid grassland to multi-year extreme drought. Ecol. Indic. 131, 108139 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Knapp, A. K., Ciais, P. & Smith, M. D. Reconciling inconsistencies in precipitation-productivity relationships: implications for climate change. N. Phytol. 214, 41–47 (2017).

    Article 

    Google Scholar
     

  • Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Knapp, A. K. et al. Field experiments have enhanced our understanding of drought impacts on terrestrial ecosystems—but where do we go from here? Funct. Ecol. 38, 76–97 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V., P. et al.) 1767–1926 (Cambridge Univ. Press, 2021).

  • Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 12, 2754 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rammig, A. & Mahecha, M. D. Ecosystem responses to climate extremes. Nature 527, 315–316 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Spinoni, J. et al. Future global meteorological drought hot spots: a study based on CORDEX data. J. Clim. 33, 3635–3661 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Easterling, D. R. et al. Climate extremes: observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ploughe, L. W. et al. Community Response to Extreme Drought (CRED): a framework for drought-induced shifts in plant-plant interactions. N. Phytol. 222, 52–69 (2019).

    Article 

    Google Scholar
     

  • Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

    Article 
    MATH 

    Google Scholar
     

  • Tielborger, K. et al. Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nat. Commun. 5, 5102 (2014).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mariotte, P., Vandenberghe, C., Kardol, P., Hagedorn, F. & Buttler, A. Subordinate plant species enhance community resistance against drought in semi-natural grasslands. J. Ecol. 101, 763–773 (2013).

    Article 

    Google Scholar
     

  • Dietrich, P. et al. Plant diversity and community age stabilize ecosystem multifunctionality. Glob. Change Biol. 30, e17225 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ma, F. et al. Opposing effects of warming on the stability of above- and belowground productivity in facing an extreme drought event. Ecology 105, e4193 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Sasaki, T. et al. Dryland sensitivity to climate change and variability using nonlinear dynamics. Proc. Natl Acad. Sci. USA 120, e2305050120 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Sala, O. E., Gherardi, L. A., Reichmann, L., Jobbagy, E. & Peters, D. Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos. Trans. R. Soc. B 367, 3135–3144 (2012).

    Article 

    Google Scholar
     

  • Stroemberg, C. A. E. in Annual Review of Earth and Planetary Sciences (eds Jeanloz, R. & Freeman, K. H.) 517–544 (Annual Reviews, 2011).

  • Smith, M. D. et al. Shared drivers but divergent ecological responses: insights from long-term experiments in mesic savanna grasslands. Bioscience 66, 666–682 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Borer, E. T., Grace, J. B., Harpole, W. S., MacDougall, A. S. & Seabloom, E. W. A decade of insights into grassland ecosystem responses to global environmental change. Nat. Ecol. Evol. 1, 0118 (2017).

    Article 

    Google Scholar
     

  • Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Borer, E. T. et al. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: a phylogenetically controlled screening experiment. N. Phytol. 185, 780–791 (2010).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Zhang, B. et al. Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology 100, e02828 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Batbaatar, A., Carlyle, C. N., Bork, E. W., Chang, S. X. & Cahill, J. F. Multi-year drought alters plant species composition more than productivity across northern temperate grasslands. J. Ecol. 110, 197–209 (2022).

    Article 

    Google Scholar
     

  • Munson, S. M., Bradford, J. B., Butterfield, B. J. & Gremer, J. R. Primary production responses to extreme changes in North American Monsoon precipitation vary by elevation and plant functional composition through time. J. Ecol. 110, 2232–2245 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Song, L. et al. Grassland sensitivity to drought is related to functional composition across East Asia and North America. Ecology 105, e4220 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Knapp, A. K. et al. Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc. Natl Acad. Sci. USA 117, 22249–22255 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Muldavin, E. H., Moore, D. I., Collins, S. L., Wetherill, K. R. & Lightfoot, D. C. Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem. Oecologia 155, 123–132 (2008).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Stotz, G. C., Salgado-Luarte, C., Escobedo, V. M., Valladares, F. & Gianoli, E. Global trends in phenotypic plasticity of plants. Ecol. Lett. 24, 2267–2281 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Robertson, T. R., Bell, C. W., Zak, J. C. & Tissue, D. T. Precipitation timing and magnitude differentially affect aboveground annual net primary productivity in three perennial species in a Chihuahuan Desert grassland. N. Phytol. 181, 230–242 (2009).

    Article 

    Google Scholar
     

  • Liu, D. J. et al. Increasing climatic sensitivity of global grassland vegetation biomass and species diversity correlates with water availability. N. Phytol. 230, 1761–1771 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Hoover, D. L., Knapp, A. K. & Smith, M. D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95, 2646–2656 (2014).

    Article 
    MATH 

    Google Scholar
     

  • Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bazzichetto, M. et al. Biodiversity promotes resistance but dominant species shape recovery of grasslands under extreme drought. J. Ecol. 112, 1087–1100 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Pfisterer, A. B. & Schmid, B. Diversity-dependent production can decrease the stability of ecosystem functioning. Nature 416, 84–86 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • De Boeck, H. J. et al. Patterns and drivers of biodiversity-stability relationships under climate extremes. J. Ecol. 106, 890–902 (2018).

    Article 
    MATH 

    Google Scholar
     

  • Wang, S., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: linking theory to data. Ecography 42, 1200–1211 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Smith, M. D. et al. Mass ratio effects underlie ecosystem responses to environmental change. J. Ecol. 108, 855–864 (2020).

    Article 
    MATH 

    Google Scholar
     

  • Kooyers, N. J. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Sci. 234, 155–162 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Mortensen, B. et al. Herbivores safeguard plant diversity by reducing variability in dominance. J. Ecol. 106, 101–112 (2018).

    Article 
    CAS 
    MATH 

    Google Scholar
     

  • Yahdjian, L. et al. Why coordinated distributed experiments should go global. Bioscience 71, 918–927 (2021).

    Article 
    MATH 

    Google Scholar
     

  • Dixon, A. P., Faber-Langendoen, D., Josse, C., Morrison, J. & Loucks, C. J. Distribution mapping of world grassland types. J. Biogeogr. 41, 2003–2019 (2014).

    Article 

    Google Scholar
     

  • Yahdjian, L. & Sala, O. E. A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133, 95–101 (2002).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar
     

  • Rudgers, J. A. et al. Sensitivity of dryland plant allometry to climate. Funct. Ecol. 33, 2290–2303 (2019).

    Article 
    MATH 

    Google Scholar
     

  • Mariotte, P. Do subordinate species punch above their weight? Evidence from above- and below-ground. N. Phytol. 203, 16–21 (2014).

    Article 

    Google Scholar
     

  • Zomer, R. J., Xu, J. & Trabucco, A. Version 3 of the global aridity index and potential evapotranspiration database. Sci. Data 9, 409 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fick, S. E. & Hijmans, R. J. Worldclim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar
     

  • Yu, Q. et al. Data and code for ‘Contrasting drought sensitivity of Eurasian and North American grasslands’. Zenodo https://doi.org/10.5281/zenodo.14004857 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments