Thursday, February 12, 2026
No menu items!
HomeNatureContinuous-wave narrow-linewidth vacuum ultraviolet laser source

Continuous-wave narrow-linewidth vacuum ultraviolet laser source

  • Kroger, L. A. & Reich, C. W. Features of the low-energy level scheme of 229Th as observed in the α-decay of 233U. Nucl. Phys. A 259, 29–60 (1976).

    Article 
    ADS 

    Google Scholar
     

  • Beck, B. R. et al. Energy splitting of the ground-state doublet in the nucleus 229Th. Phys. Rev. Lett. 98, 142501 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Seiferle, B. et al. Energy of the 229Th nuclear clock transition. Nature 573, 243–246 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Masuda, T. et al. X-ray pumping of the 229Th nuclear clock isomer. Nature 573, 238–242 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sikorsky, T. et al. Measurement of the 229Th isomer energy with a magnetic microcalorimeter. Phys. Rev. Lett. 125, 142503 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kraemer, S. et al. Observation of the radiative decay of the 229Th nuclear clock isomer. Nature 617, 706–710 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Peik, E. & Tamm, C. Nuclear laser spectroscopy of the 3.5 eV transition in Th-229. Europhys. Lett. 61, 181 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Campbell, C. J. et al. Single-ion nuclear clock for metrology at the 19th decimal place. Phys. Rev. Lett. 108, 120802 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rellergert, W. G. et al. Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the 229Th nucleus. Phys. Rev. Lett. 104, 200802 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Kazakov, G. A. et al. Performance of a 229Thorium solid-state nuclear clock. New J. Phys. 14, 083019 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Beeks, K. et al. Growth and characterization of thorium-doped calcium fluoride single crystals. Sci. Rep. 13, 3897 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jeet, J. Search for the Low Lying Transition in the 229Th Nucleus. Dissertation, Univ. California, Los Angeles (2018).

  • Thielking, J. et al. Vacuum-ultraviolet laser source for spectroscopy of trapped thorium ions. New J. Phys. 25, 083026 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, C. et al. Tunable VUV frequency comb for 229mTh nuclear spectroscopy. Opt. Lett. 47, 5591–5594 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tiedau, J. et al. Laser excitation of the Th-229 nucleus. Phys. Rev. Lett. 132, 182501 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Elwell, R. et al. Laser excitation of the 229Th nuclear isomeric transition in a solid-state host. Phys. Rev. Lett. 133, 013201 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, C. et al. Frequency ratio of the 229mTh nuclear isomeric transition and the 87Sr atomic clock. Nature 633, 63–70 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Beeks, K. et al. The thorium-229 low-energy isomer and the nuclear clock. Nat. Rev. Phys. 3, 238–248 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hodgson, R. T., Sorokin, P. P. & Wynne, J. J. Tunable coherent vacuum-ultraviolet generation in atomic vapors. Phys. Rev. Lett. 32, 343–346 (1974).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scholz, M. et al. 1.3-mW tunable and narrow-band continuous-wave light source at 191 nm. Opt. Express 20, 18659–18664 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schmidt, P. O. et al. Spectroscopy using quantum logic. Science 309, 749–752 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Marshall, M. C. et al. High-stability single-ion clock with 5.5 × 10−19 systematic uncertainty. Phys. Rev. Lett. 135, 033201 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schmidt-Kaler, F. et al. Rydberg excitation of trapped cold ions: a detailed case study. New J. Phys. 13, 075014 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, C. et al. Submicrosecond entangling gate between trapped ions via Rydberg interaction. Nature 580, 345–349 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, X. et al. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review. Rep. Prog. Phys. 81, 062101 (2018).

    Article 
    ADS 
    MathSciNet 
    PubMed 

    Google Scholar
     

  • Kostko, O., Bandyopadhyay, B. & Ahmed, M. Vacuum ultraviolet photoionization of complex chemical systems. Annu. Rev. Phys. Chem. 67, 19–40 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Flambaum, V. V. Enhanced effect of temporal variation of the fine structure constant and the strong interaction in 229Th. Phys. Rev. Lett. 97, 092502 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fuchs, E. et al. Searching for dark matter with the 229Th nuclear lineshape from laser spectroscopy. Phys. Rev. X 15, 021055 (2025).

    CAS 

    Google Scholar
     

  • Zhang, C. et al. 229ThF4 thin films for solid-state nuclear clocks. Nature 636, 603–608 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Higgins, J. S. et al. Temperature sensitivity of a thorium-229 solid-state nuclear clock. Phys. Rev. Lett. 134, 113801 (2025).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Terhune, J. E. S. et al. Photo-induced quenching of the 229Th isomer in a solid-state host. Phys. Rev. Res. 7, L022062 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Schaden, F. et al. Laser-induced quenching of the Th-229 nuclear clock isomer in calcium fluoride. Phys. Rev. Res. 7, L022036 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Campbell, C. J., Radnaev, A. G. & Kuzmich, A. Wigner crystals of 229Th for optical excitation of the nuclear isomer. Phys. Rev. Lett. 106, 223001 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Thielking, J. et al. Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321–325 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scharl, K. et al. Setup for the ionic lifetime measurement of the 229mTh3+ nuclear clock isomer. Atoms 11, 108 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zitzer, G. et al. Sympathetic cooling of trapped Th3+ alpha-recoil ions for laser spectroscopy. Phys. Rev. A 109, 033116 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yamaguchi, A. et al. Laser spectroscopy of triply charged 229Th isomer for a nuclear clock. Nature 629, 62–66 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Thirolf, P. Shedding light on the thorium-229 nuclear clock isomer. Physics 17, 71 (2024).

    Article 

    Google Scholar
     

  • Mutailipu, M. & Pan, S. Emergent deep-ultraviolet nonlinear optical candidates. Angew. Chem. Int. Ed. 59, 20302–20317 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Víllora, E. G., Shimamura, K., Sumiya, K. & Ishibashi, H. Birefringent- and quasi phase-matching with BaMgF4 for vacuum-UV/UV and mid-IR all solid-state lasers. Opt. Express 17, 12362–12378 (2009).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Yakar, O., Nitiss, E., Hu, J. & Brès, C.-S. Integrated backward second-harmonic generation through optically induced quasi-phase-matching. Phys. Rev. Lett. 131, 143802 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Eikema, K. S. E., Walz, J. & Hänsch, T. W. Continuous wave coherent Lyman-α radiation. Phys. Rev. Lett. 83, 3828 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kolbe, D., Scheid, M. & Walz, J. Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation. Phys. Rev. Lett. 109, 063901 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pahl, A. et al. Generation of continuous coherent radiation at Lyman-α and 1S-2P spectroscopy of atomic hydrogen. Laser Phys. 15, 46–54 (2005).

    CAS 

    Google Scholar
     

  • Xiao, Q. et al. Proposal for the generation of continuous-wave vacuum ultraviolet laser light for Th-229 isomer precision spectroscopy. Preprint at https://arxiv.org/abs/2406.16841 (2024).

  • Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Penyazkov, G., Yu, Y., Skripnikov, L. V. & Ding, S. Theoretical study of transition matrix elements in cadmium for vacuum-ultraviolet generation in 229Th nuclear clock applications. Phys. Rev. A 112, 022807 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, J. et al. A new instrument of VUV laser desorption/ionization mass spectrometry imaging with micrometer spatial resolution and low level of molecular fragmentation. Rev. Sci. Instrum. 88, 114102 (2017).

  • Vidal, C. R. in Tunable Lasers (eds Mollenauer, L. F., White, J. C. & Pollock, C. R.) Ch. 3 (Springer, 2005).

  • Tian, H. et al. Frequency-shifted f-2f interferometer for unveiling the noise performance of carrier-envelope offset in passively stabilized frequency combs. Appl. Phys. Lett. 125, 241107 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bodine, M. I. et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2, 033395 (2020).

    Article 
    CAS 

    Google Scholar
     

  • von der Wense, L. et al. The theory of direct laser excitation of nuclear transitions. Eur. Phys. J. A 56, 176 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Hiraki, T. et al. Controlling 229Th isomeric state population in a VUV transparent crystal. Nat. Commun. 15, 5536 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matei, D. G. et al. 1.5 μm lasers with sub-10 mHz linewidth. Phys. Rev. Lett. 118, 263202 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lal, V. et al. Continuous-wave laser source at the 148 nm nuclear transition of Th-229. Optica 12, 1971–1974 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Wu, L. et al. 0.26-Hz-linewidth ultrastable lasers at 1557 nm. Sci. Rep. 6, 24969 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Riley, D. S. & Karam, S. L. The Allan variance and its applications to frequency stability measurements. Proc. IEEE 82, 1250–1259 (1994).


    Google Scholar
     

  • Riley, W. J. Handbook of frequency stability analysis. National Institute of Standards and Technology https://www.nist.gov/publications/handbook-frequency-stability-analysis (2008).

  • Makdissi, A., Vernotte, F. & De Clercq, E. Stability variances: a filter approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1011–1028 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

  • Elliott, D. S., Roy, R. & Smith, S. J. Extracavity laser band-shape and bandwidth modification. Phys. Rev. A 26, 12–18 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Larkin, K. G. Efficient nonlinear algorithm for envelope detection in white-light interferograms. J. Opt. Soc. Am. A 13, 832–843 (1996).

    Article 
    ADS 

    Google Scholar
     

  • Rutman, J. Characterization of phase and frequency instabilities in precision frequency sources: fifteen years of progress. Proc. IEEE 66, 1048–1075 (1978).

    Article 
    ADS 

    Google Scholar
     

  • Domenico, G. D., Schilt, S. & Thomann, P. Simple approach to the relation between laser frequency noise and laser line shape. Appl. Opt. 49, 4801–4807 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019).

    Article 

    Google Scholar
     

  • Photomultiplier Tubes: Basics and Applications 4th edn (Hamamatsu Photonics K. K., 2017).

  • RELATED ARTICLES

    Most Popular

    Recent Comments