Schindler, D. E. & Smits, A. P. Subsidies of aquatic resources in terrestrial ecosystems. Ecosystems 20, 78â93 (2017).
Subalusky, A. L., Dutton, C. L., Rosi, E. J. & Post, D. M. Annual mass drownings of the Serengeti wildebeest migration influence nutrient cycling and storage in the Mara River. Proc. Natl Acad. Sci. USA 114, 7647â7652 (2017).
Blais, J. M. et al. Biologically mediated transport of contaminants to aquatic systems. Environ. Sci. Technol. 41, 1075â1084 (2007).
Walters, D. M., Kraus, J. M. & Mills, M. A. in Contaminants and Ecological Subsidies: The Land-Water Interface (eds Kraus, J. M. et al.) 1â14 (Springer, 2020); https://doi.org/10.1007/978-3-030-49480-3_1.
Gende, S. M., Edwards, R. T., Willson, M. F. & Wipfli, M. S. Pacific salmon in aquatic and terrestrial ecosystems. BioScience 52, 917 (2002).
Krümmel, E. M. et al. Delivery of pollutants by spawning salmon. Nature 425, 255â256 (2003).
Christensen, J. R., MacDuffee, M., Macdonald, R. W., Whiticar, M. & Ross, P. S. Persistent organic pollutants in British Columbia grizzly bears: consequence of divergent diets. Environ. Sci. Technol. 39, 6952â6960 (2005).
Ruggerone, G. T. & Irvine, J. R. Numbers and biomass of natural- and hatchery-origin pink salmon, chum salmon, and sockeye salmon in the North Pacific Ocean, 1925â2015. Mar. Coast. Fish. 10, 152â168 (2018).
Subalusky, A. L. & Post, D. M. Context dependency of animal resource subsidies. Biol. Rev. 94, 517â538 (2019).
Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).
Furey, N. B., Armstrong, J. B., Beauchamp, D. A. & Hinch, S. G. Migratory coupling between predators and prey. Nat. Ecol. Evol. 2, 1846â1853 (2018).
Flecker, A. S. et al. Migratory fishes as material and process subsidies in riverine ecosystems. Am. Fish. Soc. Symp. 73, 559â592 (2010).
Naiman, R. J., Bilby, R. E., Schindler, D. E. & Helfield, J. M. Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems 5, 399â417 (2002).
Schindler, D. E. et al. Riding the crimson tide: mobile terrestrial consumers track phenological variation in spawning of an anadromous fish. Biol. Lett. 9, 20130048 (2013).
Walsh, J. C. et al. Relationships between Pacific salmon and aquatic and terrestrial ecosystems: implications for ecosystemâbased management. Ecology 101, e03060 (2020).
Schindler, D. E. et al. Pacific salmon and the ecology of coastal ecosystems. Front. Ecol. Environ. 1, 31â37 (2003).
Janetski, D. J., Chaloner, D. T., Tiegs, S. D. & Lamberti, G. A. Pacific salmon effects on stream ecosystems: a quantitative synthesis. Oecologia 159, 583â595 (2009).
Hocking, M. D. & Reynolds, J. D. Impacts of salmon on riparian plant diversity. Science 331, 1609â1612 (2011).
Gresh, T., Lichatowich, J. & Schoonmaker, P. An estimation of historic and current levels of salmon production in the northeast Pacific ecosystem: evidence of a nutrient deficit in the freshwater systems of the Pacific Northwest. Fisheries 25, 15â21 (2000).
Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28, 289â316 (1997).
Walters, D. M., Fritz, K. M. & Otter, R. R. The dark side of subsidies: adult stream insects export organic contaminants to riparian predators. Ecol. Appl. 18, 1835â1841 (2008).
Kroeze, C. & Seitzinger, S. P. Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: a global model. Nutr. Cycl. Agroecosyst. 52, 195â212 (1998).
Liu, M. et al. Rivers as the largest source of mercury to coastal oceans worldwide. Nat. Geosci. 14, 672â677 (2021).
Cadenasso, M. L., Weathers, K. C. & Pickett, S. T. A. in Food Webs at the Landscape Level (eds Polis, G. A. et al.) 263â267 (Univ. Chicago Press, 2004).
Satterfield, D. A., Sillett, T. S., Chapman, J. W., Altizer, S. & Marra, P. P. Seasonal insect migrations: massive, influential, and overlooked. Front. Ecol. Environ. 18, 335â344 (2020).
Oke, K. B. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).
Ruggerone, G. T. et al. From diatoms to killer whales: impacts of pink salmon on North Pacific ecosystems. Mar. Ecol. Prog. Ser. 719, 1â40 (2023).
Hites, R. A. Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ. Sci. Technol. 38, 945â956 (2004).
Jallen, D. M. et al. Yukon River Salmon Stock Status and Salmon Fisheries, 2022: A Report to the Alaska Board of Fisheries, January 2023 (Alaska Department of Fish and Game, 2023).
Sands, T., Elison, T., Tiernan, A. & Stacey, P. 2022 Bristol Bay Salmon Season Summary (Alaska Department of Fish and Game, 2022).
Myers, K. W., Walker, R. V., Fowler, S. & Dahlberg, M.L. Known Ocean Ranges of Stocks of Pacific Salmon and Steelhead as Shown by Tagging Experiments, 1956â1989 (Univ. Washington, Fisheries Research Institute, 1990).
Johnson, S. P. & Schindler, D. E. Trophic ecology of Pacific salmon (Oncorhynchus spp.) in the ocean: a synthesis of stable isotope research. Ecol. Res. 24, 855â863 (2009).
Quinn, T. P. The Behavior and Ecology of Pacific Salmon and Trout (Univ. Washington Press, 2005).
Qin, Y. & Kaeriyama, M. Feeding habits and trophic levels of Pacific salmon (Oncorhynchus spp.) in the North Pacific Ocean. NPAFC Bull. 6, 469â481 (2016).
Ebel, J. D. Nutrient Cycling by Large Consumers at Individual, Population, and Ecosystem Levels. PhD thesis, Memorial University of Newfoundland (2017).
Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A. & Campbell, L. M. Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ. Sci. Technol. 47, 13385â13394 (2013).
Walters, D. M. et al. Trophic magnification of organic chemicals: a global synthesis. Environ. Sci. Technol. 50, 4650â4658 (2016).
Kelly, B. C. et al. Tissue residue concentrations of organohalogens and trace elements in adult Pacific salmon returning to the Fraser River, British Columbia, Canada. Environ. Toxicol. Chem. 30, 367â376 (2011).
Bowerman, T. E., Pinson-Dumm, A., Peery, C. A. & Caudill, C. C. Reproductive energy expenditure and changes in body morphology for a population of Chinook salmon Oncorhynchus tshawytscha with a long distance migration. J. Fish Biol. 90, 1960â1979 (2017).
McVeigh, B. R., Healey, M. C. & Wolfe, F. Energy expenditures during spawning by chum salmon Oncorhynchus keta (Walbaum) in British Columbia. J. Fish Biol. 71, 1696â1713 (2007).
Groot, C. & Margolis, L. Pacific Salmon Life Histories (UBC Press, 1991).
Holtgrieve, G. W. & Schindler, D. E. Marine-derived nutrients, bioturbation, and ecosystem metabolism: reconsidering the role of salmon in streams. Ecology 92, 373â385 (2011).
Ewald, G., Larsson, P., Linge, H., Okla, L. & Szarzi, N. Biotransport of organic pollutants to an inland Alaska lake by migrating sockeye salmon (Oncorhynchus nerka). Arctic 51, 40â47 (1998).
Christensen, J. R., Yunker, M. B., MacDuffee, M. & Ross, P. S. Plant consumption by grizzly bears reduces biomagnification of salmonâderived polychlorinated biphenyls, polybrominated diphenyl ethers, and organochlorine pesticides. Environ. Toxicol. Chem. 32, 995â1005 (2013).
Noël, M. et al. Grizzly bear hair reveals toxic exposure to mercury through salmon consumption. Environ. Sci. Technol. 48, 7560â7567 (2014).
Gerig, B. S. et al. Environmental context and contaminant biotransport by Pacific salmon interact to mediate the bioaccumulation of contaminants by stream-resident fish. J. Appl. Ecol. 55, 1846â1859 (2018).
Gerig, B. S., Janetski, D. J., Chaloner, D. T. & Lamberti, G. A. Contaminant biotransport by Pacific salmon in the Great Lakes. Front. Ecol. Evol. 8, 199 (2020).
Gerig, B. S., Chaloner, D. T., Rediske, R. R., Paterson, G. & Lamberti, G. A. Pacific salmon as vectors of environmental contaminants: an experimental test confirms synoptic surveys in natural streams. Environ. Pollut. 336, 122355 (2023).
McGrew, A. K. et al. Mercury in gray wolves (Canis lupus) in Alaska: increased exposure through consumption of marine prey. Sci. Total Environ. 468â469, 609â613 (2014).
Hanson, M. B. et al. Endangered predators and endangered prey: seasonal diet of Southern Resident killer whales. PLoS ONE 16, e0247031 (2021).
U.S. Fish and Wildlife Service. U.S. Fish and Wildlife Service Final Report: Bald Eagle Population Size: 2020 Update (U.S. Fish & Wildlife Service, 2020); https://www.fws.gov/media/us-fish-and-wildlife-service-final-report-bald-eagle-population-size-2020-update.
Alaska Department of Fish and Game. Bald Eagle Species Profile. https://www.adfg.alaska.gov/index.cfm?adfg=baldeagle.main.
Ackerman, J. T. et al. Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci. Total Environ. 568, 749â769 (2016).
Baker, M. R., Schindler, D. E., Holtgrieve, G. W. & St. Louis, V. L. Bioaccumulation and transport of contaminants: migrating sockeye salmon as vectors of mercury. Environ. Sci. Technol. 43, 8840â8846 (2009).
Twining, C. W. et al. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity. Proc. Natl Acad. Sci. USA 113, 10920â10925 (2016).
Wang, D. et al. Organochlorine pesticides in fish from Taihu Lake, China, and associated human health risk assessment. Ecotoxicol. Environ. Safety 98, 383â389 (2013).
Foran, J. A. et al. Quantitative analysis of the benefits and risks of consuming farmed and wild salmon. J. Nutr. 135, 2639â2643 (2005).
Moore, J. W. & Schindler, D. E. Nutrient export from freshwater ecosystems by anadromous sockeye salmon (Oncorhynchus nerka). Can. J. Fish. Aquat. Sci. 61, 1582â1589 (2004).
Pitman, K. J. et al. Glacier retreat creating new Pacific salmon habitat in western North America. Nat. Commun. 12, 6816 (2021).
North Pacific Anadromous Fish Commission. NPAFC Pacific Salmonid Catch Statistics (2020); https://www.npafc.org/statistics/.
Ruggerone, G. T. et al. 2016 Arctic Yukon Kuskokwim Sustainable Salmon Initiative Project Product. Growth, Age & Survival of AYK Chinook Salmon (2016); https://www.aykssi.org/wp-content/uploads/Ruggerone-Connors-2016-AYK-Chinook-Growth-Survival-1334-Final-Report.pdf.
Larson, S. 2020 Kuskokwim River Chinook Salmon Run Reconstruction and 2021 Forecast (Alaska Department of Fish and Game, 2021); https://www.adfg.alaska.gov/FedAidPDFs/RIR.3A.2021.02.pdf.
Rogers, D. E. in The Gulf of Alaska: Physical Environment and Biological Resources (eds Hood, D. W. & Zimmerman, S. T.) 461â476 (National Oceanic and Atmospheric Administration, 1987).
Hagerman, G., Vaughn, M. & Priest, J. Annual Management Report for the 2019 Southeast Alaska/Yakutat Salmon Troll Fisheries (Alaska Department of Fish and Game. 2020); https://www.adfg.alaska.gov/FedAidPDFs/FMR20-21.pdf.
Ogden, A. D. et al. Canadian Commercial Catches and Escapements of Chinook and Coho Salmon Separated into Hatchery- and Wild-Origin Fish (North Pacific Anadromous Fish Commission, 2014); https://www.npafc.org/wp-content/uploads/Public-Documents/2014/1531Canada.pdf.
Pacific Fishery Management Council. Escapements to Inland Fisheries and Spawning Areas. Salmon Review Appendix B. Escapements to Natural Areas Only (2020); https://www.pcouncil.org/documents/2019/06/escapements-to-inland-fisheries-and-spawning-areas-salmon-review-appendix-b-excel-file-format.xlsm.
Kendall, N. W., Hard, J. J. & Quinn, T. P. Quantifying six decades of fishery selection for size and age at maturity in sockeye salmon. Evol. Appl. 2, 523â536 (2009).
Kendall, N. W. & Quinn, T. P. Length and age trends of Chinook salmon in the Nushagak River, Alaska, related to commercial and recreational fishery selection and exploitation. Trans. Am. Fish. Soc. 140, 611â622 (2011).
Colombo, S. M. & Mazal, X. Investigation of the nutritional composition of different types of salmon available to Canadian consumers. J. Agric. Food Res. 2, 100056 (2020).
Alaska Department of Environmental Conservation. Fish Contaminant Data. https://dec.alaska.gov/eh/vet/fish-monitoring-program/fish-tissue-mercury (2022).
Gibson, P. P., Mills, M. A., Kraus, J. M. & Walters, D. M. A modeling approach to compare ΣPCB concentrations between congener-specific analyses. Integr. Environ. Assess. Manage. 13, 227â232 (2017).
Hayward, D., Wong, J. & Krynitsky, A. J. Polybrominated diphenyl ethers and polychlorinated biphenyls in commercially wild caught and farm-raised fish fillets in the United States. Environ. Res. 103, 46â54 (2007).
Cullon, D. L. et al. Persistent organic pollutants in Chinook salmon (Oncorhynchus tshawytscha): implications for resident killer whales of British Columbia and adjacent waters. Environ. Toxicol. Chem. 28, 148 (2009).
Aas, T. S., à sgård, T. & Ytrestøyl, T. Chemical composition of whole body and fillet of slaughter sized Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) farmed in Norway in 2020. Aquac. Rep. 25, 101252 (2022).
Eagles-Smith, C. A. et al. Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. Sci. Total Environ. 568, 1171â1184 (2016).
Stone, D. Polybrominated diphenyl ethers and polychlorinated biphenyls in different tissue types from Chinook salmon (Oncorhynchus tshawytscha). Bull. Environ. Contam. Toxicol. 76, 148â154 (2006).
Batt, A. L., Wathen, J. B., Lazorchak, J. M., Olsen, A. R. & Kincaid, T. M. Statistical survey of persistent organic pollutants: risk estimations to humans and wildlife through consumption of fish from U.S. rivers. Environ. Sci. Technol. 51, 3021â3031 (2017).
Hobbs, N. T. & Hooten, M. B. Bayesian Models: A Statistical Primer for Ecologists (Princeton Univ. Press, 2015).
Wesner, J. S. & Pomeranz, J. P. F. Choosing priors in Bayesian ecological models by simulating from the prior predictive distribution. Ecosphere 12, e03739 (2021).
Azad, A. M. et al. Effects of geography and species variation on selenium and mercury molar ratios in Northeast Atlantic marine fish communities. Sci. Total Environ. 652, 1482â1496 (2019).
Sprague, M., Dick, J. R. & Tocher, D. R. Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006â2015. Sci. Rep. 6, 21892 (2016).
Montory, M., Habit, E., Fernandez, P., Grimalt, J. O. & Barra, R. PCBs and PBDEs in wild Chinook salmon (Oncorhynchus tshawytscha) in the Northern Patagonia, Chile. Chemosphere 78, 1193â1199 (2010).
Anderson, R. B. & Everhart, W. H. Concentrations of DDT in landlocked salmon (Salmo salar) at Sebago Lake, Maine. Trans. Am. Fish. Soc. 95, 160â164 (1966).
Gelman, A., Simpson, D. & Betancourt, M. The prior can often only be understood in the context of the likelihood. Entropy 19, 555 (2017).
Bürkner, P.-C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395â411 (2018).
Stan Development Team. RStan: the R interface to Stan. (2020).
Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. A 182, 389â402 (2019).
Dietze, M. Ecological Forecasting (Princeton Univ. Press, 2017).
Groemping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1â27 (2007).
Groemping, U. & Matthias, L. Relaimpo: relative importance of regressors in linear models. (2021).
Gladyshev, M. I. et al. Benefit-risk ratio of food fish intake as the source of essential fatty acids vs. heavy metals: a case study of Siberian grayling from the Yenisei River. Food Chem. 115, 545â550 (2009).
EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 10, 2985 (2012).
Wesner, J. S. et al. Data and code for âContinental-scale nutrient and contaminant delivery by Pacific salmonâ. Zenodo https://doi.org/10.5281/zenodo.12810135 (2024).