Allason-Jones, L. in A Companion to Women in the Ancient World (eds James, S. L. & Dillon, S.) Ch. 34, 467–477 (Blackwell, 2012).
Russell, M., Smith, M., Cheetham, P., Evans, D. & Manley, H. The girl with the chariot medallion: a well-furnished, Late Iron Age Durotrigian burial from Langton Herring, Dorset. Archaeol. J. 176, 196–230 (2019).
Cunliffe, B. Britain Begins (OUP Oxford, 2013).
Ember, C. R., Droe, A. & Russell, D. in Explaining Human Culture (ed. Ember, C. R.) (Human Relations Area Files https://hraf.yale.edu/ehc/summaries/residence-and-kinship, accessed 01/10/2024).
Murdock, G. P. et al. D-PLACE dataset derived from Murdock et al. 1999 ‘Ethnographic Atlas’ (v3.0). Zenodo https://doi.org/10.5281/zenodo.10177061 (2023).
Kirby, K. R. et al. D-PLACE: a global database of cultural, linguistic and environmental diversity. PLoS ONE 11, e0158391 (2016).
Chyleński, M. et al. Patrilocality and hunter-gatherer-related ancestry of populations in East-Central Europe during the Middle Bronze Age. Nat. Commun. 14, 4395 (2023).
Fowler, C. et al. A high-resolution picture of kinship practices in an Early Neolithic tomb. Nature 601, 584–587 (2022).
Schroeder, H. et al. Unraveling ancestry, kinship, and violence in a Late Neolithic mass grave. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1820210116 (2019).
Furtwängler, A. et al. Ancient genomes reveal social and genetic structure of Late Neolithic Switzerland. Nat. Commun. 11, 1915 (2020).
Villalba-Mouco, V. et al. Kinship practices in the early state El Argar society from Bronze Age Iberia. Sci. Rep. 12, 22415 (2022).
Mittnik, A. et al. Kinship-based social inequality in Bronze Age Europe. Science 366, 731–734 (2019).
Sjögren, K.-G. et al. Kinship and social organization in Copper Age Europe. A cross-disciplinary analysis of archaeology, DNA, isotopes, and anthropology from two Bell Beaker cemeteries. PLoS ONE 15, e0241278 (2020).
Mackay, D. Echolands: A Journey in Search of Boudica (Hachette UK, 2023).
Pope, R. Re-approaching Celts: origins, society, and social change. J. Archaeol. Res. 30, 1–67 (2022).
Morez, A. et al. Imputed genomes and haplotype-based analyses of the Picts of early medieval Scotland reveal fine-scale relatedness between Iron Age, early medieval and the modern people of the UK. PLoS Genet. 19, e1010360 (2023).
Patterson, N. et al. Large-scale migration into Britain during the Middle to Late Bronze Age. Nature 601, 588–594 (2022).
Martiniano, R. et al. Genomic signals of migration and continuity in Britain before the Anglo-Saxons. Nat. Commun. 7, 10326 (2016).
Schiffels, S. et al. Iron Age and Anglo-Saxon genomes from East England reveal British migration history. Nat. Commun. 7, 10408 (2016).
Russell, M. et al. The Durotriges Project 2016: an interim statement. Proc. Dorset Nat. Hist. Archeol. Soc. 138, 105–111 (2017).
Browning, B. L. & Browning, S. R. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194, 459–471 (2013).
MITOMAP. A human mitochondrial genome database. FOSWIKI http://www.mitomap.org (2023).
Zaidi, A. A. et al. Bottleneck and selection in the germline and maternal age influence transmission of mitochondrial DNA in human pedigrees. Proc. Natl Acad. Sci. USA 116, 25172–25178 (2019).
Lansing, J. S. et al. Kinship structures create persistent channels for language transmission. Proc. Natl Acad. Sci. USA 114, 12910–12915 (2017).
Oota, H., Settheetham-Ishida, W., Tiwawech, D., Ishida, T. & Stoneking, M. Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. Nat. Genet. 29, 20–21 (2001).
Ensor, B. E., Irish, J. D. & Keegan, W. F. The bioarchaeology of kinship: proposed revisions to assumptions guiding interpretation. Curr. Anthropol. 58, 739–761 (2017).
Fox, R. Kinship and Marriage: An Anthropological Perspective (Cambridge Univ. Press, 1984).
Fortunato, L. The evolution of matrilineal kinship organization. Proc. Biol. Sci. 279, 4939–4945 (2012).
Mattison, S. M. Evolutionary contributions to solving the ‘matrilineal puzzle’: a test of Holden, Sear, and Mace’s model. Hum. Nat. 22, 64–88 (2011).
Surowiec, A., Snyder, K. T. & Creanza, N. A worldwide view of matriliny: using cross-cultural analyses to shed light on human kinship systems. Philos. Trans. R. Soc. Lond. B 374, 20180077 (2019).
Ly, G. et al. From matrimonial practices to genetic diversity in Southeast Asian populations: the signature of the matrilineal puzzle. Philos. Trans. R. Soc. Lond. B 374, 20180434 (2019).
Booth, T. J., Brück, J., Brace, S. & Barnes, I. Tales from the Supplementary Information: ancestry change in Chalcolithic–Early Bronze Age Britain was gradual with varied kinship organization. Cambr. Archaeol. J. 31, 379–400 (2021).
Shenk, M. K., Begley, R. O., Nolin, D. A. & Swiatek, A. When does matriliny fail? The frequencies and causes of transitions to and from matriliny estimated from a de novo coding of a cross-cultural sample. Philos. Trans. R. Soc. Lond. B 374, 20190006 (2019).
Papworth, M. The Search for the Durotriges: Dorset and the West Country in the Late Iron Age (History Press, 2011).
Sellwood, L. in Aspects of the Iron Age in Central Southern Britain (eds Cunliffe, B. & Miles, D.) 191–204 (Oxford Univ. School of Archaeology, 1984).
Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453 (2012).
Chacón-Duque, J.-C. et al. Latin Americans show wide-spread Converso ancestry and imprint of local Native ancestry on physical appearance. Nat. Commun. 9, 5388 (2018).
Leslie, S. et al. The fine-scale genetic structure of the British population. Nature 519, 309–314 (2015).
Cunliffe, B. Facing the Ocean: The Atlantic and Its Peoples 8000 BC-AD 1500 (Oxford Univ. Press, 2001).
Taylor, A., Weale, A. & Ford, S. Bronze Age, Iron Age and Roman Landscapes of the Costal Plain, and a Late Iron Age Warrior Burial at North Bersted, Bognor Regis, West Sussex (Thames Valley Archaeological Services, 2014).
Fischer, C.-E. et al. Origin and mobility of Iron Age Gaulish groups in present-day France revealed through archaeogenomics. iScience 25, 104094 (2022).
Ball, M. J. & Müller, N. (eds) The Celtic Languages 2nd edn (Routledge, 2009).
Gretzinger, J. et al. Evidence for dynastic succession among early Celtic elites in Central Europe. Nat. Hum. Behav. https://doi.org/10.1038/s41562-024-01888-7 (2024).
Holden, C. J., Sear, R. & Mace, R. Matriliny as daughter-biased investment. Evol. Hum. Behav. 24, 99–112 (2003).
Jones, D. The matrilocal tribe: an organization of demic expansion. Hum. Nat. 22, 177–200 (2011).
Korotayev, A. Form of marriage, sexual division of labor, and postmarital residence in cross-cultural perspective: a reconsideration. J. Anthropol. Res. 59, 69–89 (2003).
Divale, W. T. Migration, external warfare, and matrilocal residence. Behav. Sci. Res. 9, 75–133 (1974).
Ember, M. & Ember, C. R. The conditions favoring matrilocal versus patrilocal residence. Am. Anthropol. 73, 571–594 (1971).
Moravec, J. C., Marsland, S. & Cox, M. P. Warfare induces post-marital residence change. J. Theor. Biol. 474, 52–62 (2019).
Redfern, R. & Chamberlain, A. Demographic analysis of Maiden Castle hillfort: evidence for conflict in Late Iron Age and Early Roman period. J. Paleopathol. 1, 68–73 (2011).
Waddington, C. Excavations at Fin Cop, Derbyshire: an Iron Age hillfort in conflict? Archaeol. J. 169, 159–236 (2012).
Smith, M. Mortal Wounds: The Human Skeleton as Evidence for Conflict in the Past (Pen and Sword, 2017).
Thorpe, N. in Materialisierung von Konflikten/Materialisation of Conflicts (eds Hansen, S. & Krause, R.) 259–276 (LOEWE-Schwerpunkt Prähistorische Konfliktforschung Universität Frankfurt, 2020).
Mattison, S. M., Quinlan, R. J. & Hare, D. The expendable male hypothesis. Philos. Trans. R. Soc. Lond. B 374, 20180080 (2019).
Robinson, A. L. & Gottlieb, J. How to close the gender gap in political participation: lessons from matrilineal societies in Africa. Br. J. Polit. Sci. 51, 68–92 (2021).
Lowes, S. Kinship structure & women: evidence from economics. Daedalus 149, 119–133 (2020).
Russell, M. et al. The Durotriges Project, phase one: an interim statement. Proc. Dorset Nat. Hist. Archeol. Soc. 135, 217–221 (2014).
Russell, M. et al. The Durotriges Project, phase two: an interim statement. Proc. Dorset Nat. Hist. Archeol. Soc. 136, 157–161 (2015).
Russell, M. et al. The Durotriges Project, phase three: an interim statement. Proc. Dorset Nat. Hist. Archeol. Soc. 137, 173–177 (2016).
Yang, D. Y., Eng, B., Waye, J. S., Dudar, J. C. & Saunders, S. R. Technical note: improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105, 539–543 (1998).
Gamba, C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014).
Boessenkool, S. et al. Combining bleach and mild predigestion improves ancient DNA recovery from bones. Mol. Ecol. Resour. 17, 742–751 (2017).
Dabney, J. & Meyer, M. Extraction of highly degraded DNA from ancient bones and teeth. Methods Mol. Biol. 1963, 25–29 (2019).
Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, db.prot5448 (2010).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021).
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).
van Oven, M. & Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009).
Nei, M. & Roychoudhury, A. K. Sampling variances of heterozygosity and genetic distance. Genetics 76, 379–390 (1974).
Nei, M. & Tajima, F. DNA polymorphism detectable by restriction endonucleases. Genetics 97, 145–163 (1981).
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).
Brunel, S. et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc. Natl Acad. Sci. USA 117, 12791–12798 (2020).
Dulias, K. et al. Ancient DNA at the edge of the world: continental immigration and the persistence of Neolithic male lineages in Bronze Age Orkney. Proc. Natl Acad. Sci. USA 119, e2108001119 (2022).
Margaryan, A. et al. Population genomics of the Viking world. Nature 585, 390–396 (2020).
Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015).
Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).
International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016).
Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).
Brace, S. et al. Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 3, 765–771 (2019).
Cassidy, L. M. et al. A dynastic elite in monumental Neolithic society. Nature 582, 384–388 (2020).
Yaka, R. et al. Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Curr. Biol. 31, 2455–2468 (2021).
Jones, E. R. et al. The Neolithic transition in the Baltic was not driven by admixture with Early European Farmers. Curr. Biol. 27, 576–582 (2017).
González-Fortes, G. et al. Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter-gatherers in the Lower Danube Basin. Curr. Biol. 27, 1801–1810 (2017).
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).
Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 120–126 (2021).
1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Browning, B. L., Tian, X., Zhou, Y. & Browning, S. R. Fast two-stage phasing of large-scale sequence data. Am. J. Hum. Genet. 108, 1880–1890 (2021).
Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).
Kharchenko, P., Petukhov, V., Wang, Y. & Biederstedt, E. leidenAlg: implements the Leiden algorithm via an R interface. GitHub https://github.com/kharchenkolab/leidenAlg (2023).
Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
Caballero, M. et al. Crossover interference and sex-specific genetic maps shape identical by descent sharing in close relatives. PLoS Genet. 15, e1007979 (2019).
Antonio, M. L. et al. Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).
Fernandes, D. M. et al. A genomic Neolithic time transect of hunter-farmer admixture in central Poland. Sci. Rep. 8, 14879 (2018).
Freilich, S. et al. Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Sci. Rep. 11, 16729 (2021).
Gretzinger, J. et al. The Anglo-Saxon migration and the formation of the early English gene pool. Nature 610, 112–119 (2022).
Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).
Seguin-Orlando, A. et al. Heterogeneous hunter-gatherer and steppe-related ancestries in Late Neolithic and Bell Beaker genomes from present-day France. Curr. Biol. 31, 1072–1083 (2021).
Žegarac, A. et al. Ancient genomes provide insights into family structure and the heredity of social status in the early Bronze Age of southeastern Europe. Sci. Rep. 11, 10072 (2021).
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).
Delaneau, O., Zagury, J.-F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2013).