Bertone, G. & Hooper, D. History of dark matter. Rev. Mod. Phys. 90, 045002 (2018).
Pospelov, M. et al. Detecting domain walls of axionlike models using terrestrial experiments. Phys. Rev. Lett. 110, 021803 (2013).
Afach, S. et al. Search for topological defect dark matter with a global network of optical magnetometers. Nat. Phys. 17, 1396–1401 (2021).
Derevianko, A. & Pospelov, M. Hunting for topological dark matter with atomic clocks. Nat. Phys. 10, 933–936 (2014).
Buschmann, M., Dessert, C., Foster, J. W., Long, A. J. & Safdi, B. R. Upper limit on the QCD axion mass from isolated neutron star cooling. Phys. Rev. Lett. 128, 091102 (2022).
Gorenstein, P. & Tucker, W. Astronomical signatures of dark matter. Adv. High Energy Phys. 2014, 878203 (2014).
DeMille, D., Doyle, J. M. & Sushkov, A. O. Probing the frontiers of particle physics with tabletop-scale experiments. Science 357, 990–994 (2017).
Safronova, M. et al. Search for new physics with atoms and molecules. Rev. Mod. Phys. 90, 025008 (2018).
Liu, J., Chen, X. & Ji, X. Current status of direct dark matter detection experiments. Nat. Phys. 13, 212–216 (2017).
Ferreira, E. G. Ultra-light dark matter. Astron. Astrophys. Rev. 29, 7 (2021).
Arcadi, G. et al. The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 78, 203 (2018).
O’Hare, C. A. New definition of the neutrino floor for direct dark matter searches. Phys. Rev. Lett. 127, 251802 (2021).
Chadha-Day, F., Ellis, J. & Marsh, D. J. Axion dark matter: what is it and why now? Sci. Adv. 8, eabj3618 (2022).
Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279 (1978).
Weinberg, S. A new light boson? Phys. Rev. Lett. 40, 223 (1978).
Kim, J. E. & Carosi, G. Axions and the strong CP problem. Rev. Mod. Phys. 82, 557 (2010).
Irastorza, I. G. & Redondo, J. New experimental approaches in the search for axion-like particles. Prog. Part. Nucl. Phys. 102, 89–159 (2018).
Svrcek, P. & Witten, E. Axions in string theory. J. High Energy Phys. 2006, 051 (2006).
Kawasaki, M., Saikawa, K. & Sekiguchi, T. Axion dark matter from topological defects. Phys. Rev. D 91, 065014 (2015).
Raffelt, G. G. Astrophysical axion bounds. Lect. Notes Phys. 741, 51–71 (2008).
Jiang, M., Su, H., Garcon, A., Peng, X. & Budker, D. Search for axion-like dark matter with spin-based amplifiers. Nat. Phys. 17, 1402–1407 (2021).
Wang, Y. et al. Limits on axions and axionlike particles within the axion window using a spin-based amplifier. Phys. Rev. Lett. 129, 051801 (2022).
Budker, D., Graham, P. W., Ledbetter, M., Rajendran, S. & Sushkov, A. O. Proposal for a cosmic axion spin precession experiment (CASPEr). Phys. Rev. X 4, 021030 (2014).
Garcon, A. et al. Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance. Sci. Adv. 5, eaax4539 (2019).
Bhusal, A., Houston, N. & Li, T. Searching for solar axions using data from the Sudbury Neutrino Observatory. Phys. Rev. Lett. 126, 091601 (2021).
Carenza, P. et al. Improved axion emissivity from a supernova via nucleon-nucleon bremsstrahlung. J. Cosmol. Astropart. Phys. 2019, 016 (2019).
DeRocco, W., Graham, P. W. & Rajendran, S. Exploring the robustness of stellar cooling constraints on light particles. Phys. Rev. D 102, 075015 (2020).
Bar, N., Blum, K. & D’amico, G. Is there a supernova bound on axions? Phys. Rev. D 101, 123025 (2020).
van den Bergh, S. How rare are supernovae? Comments Astrophys. 17, 125–130 (1993).
Afach, S. et al. What can a GNOME do? Search targets for the Global Network of Optical Magnetometers for Exotic physics searches. Ann. Phys. 536, 2300083 (2024).
Yang, Y., Wu, T., Zhang, J. & Guo, H. Search for topological defect of axionlike model with cesium atomic comagnetometer. Chin. Phys. B 30, 050704 (2021).
Khamis, S. S. et al. Multimessenger search for exotic field emission with a global magnetometer network. Phys. Rev. X 15, 031048 (2025).
Gavilan-Martin, D. et al. Searching for dark matter with a spin-based interferometer. Nat. Commun. 16, 4953 (2025).
Wang, Y. et al. Search for exotic parity-violation interactions with quantum spin amplifiers. Sci. Adv. 9, eade0353 (2023).
Roberts, B. M. et al. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun. 8, 1195 (2017).
Walker, T. G. & Happer, W. Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629 (1997).
Owen, B. J. & Sathyaprakash, B. S. Matched filtering of gravitational waves from inspiraling compact binaries: computational cost and template placement. Phys. Rev. D 60, 022002 (1999).
Wainstein, L. A. & Zubakov, V. Extraction of Signals from Noise (Dover, 1970).
Aybas, D. et al. Search for axionlike dark matter using solid-state nuclear magnetic resonance. Phys. Rev. Lett. 126, 141802 (2021).
Brubaker, B., Zhong, L., Lamoreaux, S., Lehnert, K. & van Bibber, K. HAYSTAC axion search analysis procedure. Phys. Rev. D 96, 123008 (2017).
Kimball, D. J. Nuclear spin content and constraints on exotic spin-dependent couplings. New J. Phys. 17, 073008 (2015).
Catena, R. & Ullio, P. A novel determination of the local dark matter density. J. Cosmol. Astropart. Phys. 2010, 004 (2010).
Bovy, J. & Tremaine, S. On the local dark matter density. Astrophys. J. 756, 89 (2012).
Sivertsson, S., Silverwood, H., Read, J. I., Bertone, G. & Steger, P. The local dark matter density from SDSS-SEGUE G-dwarfs. Mon. Not. R. Astron. Soc. 478, 1677–1693 (2018).
Huang, X. et al. Hunting for exotic bosons with flying quantum sensors in space. Phys. Rev. D 112, 095015 (2025).
Kornack, T., Ghosh, R. & Romalis, M. Nuclear spin gyroscope based on an atomic comagnetometer. Phys. Rev. Lett. 95, 230801 (2005).
Shaham, R., Katz, O. & Firstenberg, O. Strong coupling of alkali-metal spins to noble-gas spins with an hour-long coherence time. Nat. Phys. 18, 506–510 (2022).
Braaten, E. & Zhang, H. Colloquium: The physics of axion stars. Rev. Mod. Phys. 91, 041002 (2019).
Buschmann, M. et al. Dark matter from axion strings with adaptive mesh refinement. Nat. Commun. 13, 1049 (2022).
Kimball, D. J. et al. Searching for axion stars and Q-balls with a terrestrial magnetometer network. Phys. Rev. D 97, 043002 (2018).
Kusenko, A. & Steinhardt, P. J. Q-ball candidates for self-interacting dark matter. Phys. Rev. Lett. 87, 141301 (2001).
Centers, G. P. et al. Stochastic fluctuations of bosonic dark matter. Nat. Commun. 12, 7321 (2021).
Banerjee, A., Budker, D., Eby, J., Kim, H. & Perez, G. Relaxion stars and their detection via atomic physics. Commun. Phys. 3, 1 (2020).
Wu, T. et al. Search for axionlike dark matter with a liquid-state nuclear spin comagnetometer. Phys. Rev. Lett. 122, 191302 (2019).
Abel, C. et al. Search for axionlike dark matter through nuclear spin precession in electric and magnetic fields. Phys. Rev. X 7, 041034 (2017).
Dailey, C. et al. Quantum sensor networks as exotic field telescopes for multi-messenger astronomy. Nat. Astron. 5, 150–158 (2021).
Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).
Koss, M. J. et al. UGC 4211: a confirmed dual active galactic nucleus in the local universe at 230 pc nuclear separation. Astrophys. J. Lett. 942, L24 (2023).

