Thursday, June 26, 2025
No menu items!
HomeNatureComputer-vision research powers surveillance technology

Computer-vision research powers surveillance technology

  • Monahan, T. & Wood, D. M. Surveillance Studies: A Reader (Oxford Univ. Press, 2018).


    Google Scholar
     

  • Lyon, D. in Emerging Digital Spaces in Contemporary Society: Properties of Technology (eds Kalantzis-Cope, P. & Gherab-Martin, K.) 107–120 (Springer, 2010).

  • Scheuerman, M. K., Hanna, A. & Denton, E. Do datasets have politics? Disciplinary values in computer vision dataset development. Proc. ACM Hum.–Comput. Interact. 5, 317 (2021).

    Article 

    Google Scholar
     

  • Browne, S. Dark Matters: On the Surveillance of Blackness (Duke Univ. Press, 2015).

    Book 

    Google Scholar
     

  • Agre, P. E. Surveillance and capture: Two models of privacy. Inf. Soc. 10, 101–127 (1994).

    Article 

    Google Scholar
     

  • Stark, L. Facial recognition is the plutonium of AI. XRDS: Crossroads 25, 50–55 (2019).

    Article 

    Google Scholar
     

  • Zuboff, S. The Age of Surveillance Capitalism: The Fight for a Human Future at the New Frontier of Power (Profile Books, 2019).


    Google Scholar
     

  • Building community power to abolish the police state. Stop LAPD Spying Coalition https://stoplapdspying.org/ (accessed 1 September 2023).

  • Chang, M. et al. Countermeasures: The Need for New Legislation to Govern Biometric Technologies in the UK (2022).

  • Marx, G. T. in International Encyclopedia of the Social & Behavioral Sciences 2nd edn (ed. Wright, J. D.) 733–741 (Elsevier, 2015).

  • Monahan, T. & Murakami Wood, D. Introduction: Surveillance Studies as a Transdisciplinary Endeavor (2018).

  • Foucault, M. Discipline and Punish: The Birth of the Prison (Pantheon Books, 1977).


    Google Scholar
     

  • Deleuze, G. Postscript on the Societies of Control (MIT Press, 1992).


    Google Scholar
     

  • Allmer, T. Critical surveillance studies in the information society. tripleC: Commun. Capitalism Crit. 9, 566–592 (2011).

    Article 

    Google Scholar
     

  • Richards, N. M. The dangers of surveillance. Harv. Law Rev. 126, 1934 (2013).

  • Dobson, J. E. The Birth of Computer Vision (Univ. Minnesota Press, 2023).


    Google Scholar
     

  • Raji, I. D. & Fried, G. About face: a survey of facial recognition evaluation. Preprint at https://arxiv.org/abs/2102.00813 (2021).

  • Broussard, M. Artificial Unintelligence: How Computers Misunderstand the World (MIT Press, 2018).

    Book 

    Google Scholar
     

  • Königs, P. Government surveillance, privacy, and legitimacy. Philos. Technol. 35, 8 (2022).

    Article 

    Google Scholar
     

  • Szeliski, R Computer Vision: Algorithms and Applications (Springer, 2020).


    Google Scholar
     

  • Forsyth, D. & Ponce, J. Computer Vision: A Modern Approach (Pearson, 2011).

  • Call for papers. IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR 2024); https://cvpr.thecvf.com/Conferences/2024/CallForPapers.

  • Keynotes and panels. IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR 2024); https://cvpr.thecvf.com/Conferences/2024/KeynotesAndPanels.

  • Zitnick, L. et al. Spherical channels for modeling atomic interactions. In Proc. 35th Conference on Neural Information Processing Systems (eds Koyejo, S. et al.) 8054–8067 (Curran Associates, 2022).

  • Hill, K. Your Face Belongs to Us: The Secretive Startup Dismantling Your Privacy (Simon and Schuster, 2023).


    Google Scholar
     

  • Watt, E. The right to privacy and the future of mass surveillance. Int. J. Hum. Rights 21, 773–799 (2017).

    Article 

    Google Scholar
     

  • Pridmore, J. & Zwick, D. Marketing and the rise of commercial consumer surveillance. Surveill. Soc. 8, 269–277 (2011).

    Article 

    Google Scholar
     

  • Andrejevic, M. in Routledge Handbook of Surveillance Studies (eds Ball, K. et al.) 91–98 (Routledge, 2012).

  • Zuboff, S. in Social Theory Re-wired (eds Longhofer, W. & Winchester, D.) 203–213 (Routledge, 2023).

  • Csernatoni, R. & Lavallée, C. in Emerging Security Technologies and EU Governance (eds Calcara, A. et al.) 206–223 (Routledge, 2020).

  • Almansoori, M., Gallardo, A., Poveda, J., Ahmed, A. & Chatterjee, R. A global survey of Android dual-use applications used in intimate partner surveillance. In Proc. on Privacy Enhancing Technologies (eds Kerschbaum, F. & Mazurek, M. L.) 120–139 (Privacy Enhancing Technologies Board, 2022).

  • Selinger, E. & Durant, D. Amazon’s ring: surveillance as a slippery slope service. Sci. Cult. 31, 92–106 (2022).

    Article 

    Google Scholar
     

  • Nesterova, I. Questioning the EU proposal for an artificial intelligence act: the need for prohibitions and a stricter approach to biometric surveillance. Inf. Polity 27, 147–162 (2022).

  • Kalluri, P. R. & Agnew, W. Code and data for ‘Computer vision research powers surveillance technology’. Github https://github.com/wagnew3/Computer-Vision-Research-Powers-Surveillance-Technology (2025).

  • The fight to stop face recognition technology. American Civil Liberties Union www.aclu.org/news/topic/stopping-face-recognition-surveillance (accessed 1 September 2023).

  • Awumey, E., Das, S. & Forlizzi, J. A systematic review of biometric monitoring in the workplace: analyzing socio-technical harms in development, deployment and use. In Proc. 2024 ACM Conference on Fairness, Accountability, and Transparency 920–932 (2024).

  • Murray, D. et al. The chilling effects of surveillance and human rights: insights from qualitative research in Uganda and Zimbabwe. J. Hum. Rights Pract. 16, 397–412 (2023).

  • Cohen, J. E. in Cambridge Handbook of Surveillance Law (eds Gray, D. & Henderson, S. E.) 455–469 (Cambridge Univ. Press, 2017).

  • Monroe, B. L., Colaresi, M. P. & Quinn, K. M. Fightin’ words: Lexical feature selection and evaluation for identifying the content of political conflict. Polit. Anal. 16, 372–403 (2008).

    Article 

    Google Scholar
     

  • Ahmed, N. & Wahed, M. The de-democratization of AI: deep learning and the compute divide in artificial intelligence research. Preprint at https://arxiv.org/abs/2010.15581 (2020).

  • Leslie, S. W. et al. The Cold War and American Science: The Military-Industrial-Academic Complex at MIT and Stanford (Columbia Univ. Press, 1993).


    Google Scholar
     

  • Feldstein, S. The Global Expansion of AI Surveillance (Carnegie Endowment for International Peace, 2019).

  • Carrier, J. G. Misrecognition and knowledge. Inquiry 22, 321–342 (1979).

  • Véliz, C. Privacy Is Power (Melville House, 2021).


    Google Scholar
     

  • Waelen, R. A. The ethics of computer vision: an overview in terms of power. AI Ethics 4, 353–362 (2024).

    Article 

    Google Scholar
     

  • Haraway, D. in Feminist Theory Reader (eds McCann, C. et al.) 303–310 (Routledge, 2020).

  • Ensmenger, N. L. The Computer Boys Take Over: Computers, Programmers, and the Politics of Technical Expertise (MIT Press, 2012).


    Google Scholar
     

  • Birhane, A. et al. The values encoded in machine learning research. In Proc. 2022 ACM Conference on Fairness, Accountability, and Transparency 173–184 (ACM, 2022).

  • Agre, P. E. in Social Science, Technical Systems and Cooperative Work: Beyond the Great Divide (eds Bowker, G. et al.) Ch. 6 (Psychology Press, 1997).

  • Butcher, S. I. Origins of the Russell–Einstein manifesto. Technical report (Pugwash Conferences on Science and World Affairs, 2005).

  • Cevikalp, H. & Triggs, B. Face recognition based on image sets. In Proc. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2567–2573 (IEEE, 2010).

  • Salakhutdinov, R., Torralba, A. & Tenenbaum, J. Learning to share visual appearance for multiclass object detection. In Proc. CVPR 2011 1481–1488 (IEEE, 2011).

  • Khamis, S., Morariu, V. I. & Davis, L. S. A flow modelfor joint action recognition and identity maintenance. In Proc. 2012 IEEE Conference on Computer Vision and Pattern Recognition 1218–1225 (IEEE, 2012).

  • Chen, C.-Y. & Grauman, K. Watching unlabeled video helpslearn new human actions from very few labeled snapshots. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 572–579 (IEEE, 2013).

  • Lin, G., Shen, C., Shi, Q., Van den Hengel, A. & Suter, D. Fast supervised hashing with decision trees for high-dimensional data. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 1963–1970 (IEEE, 2014).

  • Yim, J. et al. Rotating your face using multi-task deep neural network. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 676–684 (IEEE, 2015).

  • Song, S. et al. Multimodal multi-stream deeplearning for egocentric activity recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition Workshops 24–31 (IEEE, 2016).

  • Arvanitopoulos, N., Achanta, R. & Susstrunk, S. Single image reflection suppression. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 4498–4506 (IEEE, 2017).

  • Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S. & Davison, A. J. Codeslam—learning a compact, optimisable representationfor dense visual slam. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2560–2568 (IEEE, 2018).

  • Shi, L., Zhang, Y., Cheng, J. & Lu, H. Skeleton-based action recognition with directed graph neural networks. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 7912–7921 (IEEE, 2019).

  • Wang, W., Wang, Y., Huang, Q. & Gao, W. Measuring visual saliency by site entropy rate. In Proc. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2368–2375 (IEEE, 2010).

  • Zhang, Y., Jia, Z. & Chen, T. Image retrieval with geometry-preserving visual phrases. In Proc. CVPR 2011 809–816 (IEEE, 2011).

  • Ranjbar, M., Vahdat, A. & Mori, G. Complexloss optimization via dual decomposition. In Proc. 2012 IEEE Conference on Computer Vision and Pattern Recognition 2304–2311 (IEEE, 2012).

  • Fidler, S., Sharma, A. & Urtasun, R. A sentence is worth a thousand pixels. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 1995–2002 (IEEE, 2013).

  • Bae, S.-H. & Yoon, K.-J. Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 1218–1225 (IEEE, 2014).

  • Zhao, R., Ouyang, W., Li, H. & Wang, X. Saliency detection by multi-context deep learning. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 1265–1274 (IEEE, 2015).

  • Wang, L., Qiao, Y., Tang, X. & Van Gool, L. Actionness estimation using hybrid fully convolutional networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2708–2717 (IEEE, 2016).

  • Liu, W. et al. Sphereface: deep hypersphere embedding for face recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 212–220 (IEEE, 2017).

  • Wan, F., Wei, P., Jiao, J., Han, Z. & Ye, Q. Min-entropy latent model for weakly supervised object detection. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 1297–1306 (IEEE, 2018).

  • Ranjan, A. et al. Competitive collaboration: Joint unsupervised learning of depth, camera motion, optical flow and motion segmentation. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 12240–12249 (IEEE, 2019).

  • Socher, R. & Fei-Fei, L. Connecting modalities: semi-supervised segmentation and annotation of images using unaligned text corpora. In Proc. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 966–973 (IEEE, 2010).

  • Harker, M. & O’Leary, P. Least squares surface reconstruction from gradients: direct algebraic methods with spectral, Tikhonov, and constrained regularization. In Proc. CVPR 2011 2529–2536 (IEEE, 2011).

  • He, J., Balzano, L. & Szlam, A. Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video. In Proc. 2012 IEEE Conference on Computer Vision and Pattern Recognition 1568–1575 (IEEE, 2012).

  • Khosla, A., Hamid, R., Lin, C.-J. & Sundaresan, N. Large-scale video summarization using web-image priors. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2698–2705 (IEEE, 2013).

  • Tang, K., Yang, J. & Wang, J. Investigating haze-relevant features in a learning framework for image dehazing. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2995–3000 (IEEE, 2014).

  • Chen, X., Ma, H., Wang, X. & Zhao, Z. Improving object proposals with multi-thresholding straddling expansion. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2587–2595 (IEEE, 2015).

  • Hu, S. et al. A polarimetric thermal database for face recognition research. In Proc. IEEE Conference on Computer Vision and Pattern Recognition Workshops 119–126 (IEEE, 2016).

  • Dansereau, D. G., Eriksson, A. & Leitner, J. Richardson-Lucy deblurring for moving light field cameras. In Proc. IEEE Conference on Computer Vision and Pattern Recognition Workshops 70–81 (IEEE, 2017).

  • Hu, R., Dollár, P., He, K., Darrell, T. & Girshick, R. Learning to segment everything. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 4233–4241 (IEEE, 2018).

  • Acuna, D., Kar, A. & Fidler, S. Devil is in the edges: learning semantic boundaries from noisy annotations. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11075–11083 (IEEE, 2019) .

  • Wu, Y., Shen, B. & Ling, H. Online robust image alignment via iterative convex optimization. In Proc. 2012 IEEE Conference on Computer Vision and Pattern Recognition 1808–1814 (IEEE, 2012).

  • Gengtí, B., Yang, L., Xu, C. & Hua, X.-S. Content-aware ranking for visual search. In Proc. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 3400–3407 (IEEE, 2010).

  • Angelova, A. & Zhu, S. Efficient object detection and segmentation for fine-grained recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 811–818 (IEEE, 2013).

  • Lin, J., Liu. Y., Hullin, M. B. & Dai, Q. Fourier analysis on transient imaging with a multifrequency time-of-flight camera. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 3230–3237 (IEEE, 2014).

  • Bernard, F. et al. A solution for multi-alignment by transformation synchronisation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2161–2169 (IEEE, 2015).

  • Yu, H., Wang, J., Huang, Z., Yang, Y. & Xu, W. Video paragraph captioning using hierarchical recurrent neural networks. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 4584–4593 (IEEE, 2016).

  • Zhang, H., Kyaw, Z., Chang, S.-F. & Chua. T.-S. Visual translation embedding network for visual relation detection. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 5532–5540 (IEEE, 2017).

  • Volpi, R., Morerio, P., Savarese, S. & Murino, V. Adversarial feature augmentation for unsupervised domain adaptation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 5495–5504 (IEEE, 2018).

  • Wu, D., Dai, Q., Liu, J., Li, B. & Wang, W. Deep incremental hashing networkfor efficient image retrieval. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 9069–9077 (IEEE, 2019).

  • Vijayanarasimhan, S. & Kapoor, A. Visual recognition and detection under bounded computational resources. In Proc. 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1006–1013 (IEEE, 2010).

  • Balzer, J., Hofer, S. & Beyerer, J. Multiview specular stereo reconstruction of large mirror surfaces. In Proc. CVPR 2011 2537–2544 (IEEE, 2011).

  • Saberian, M. J. & Vasconcelos, N. Boosting algorithms for simultaneous feature extraction and selection. In Proc. 2012 IEEE Conference on Computer Visionand Pattern Recognition 2448–2455 (IEEE, 2012).

  • Zhou, Z., Jin, H. & Ma, Y. Plane-based content preserving warps for video stabilization. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2299–2306 (IEEE, 2013).

  • Danelljan, M., Khan, F. S., Felsberg, M. & Van de Weijer, J. Adaptive color attributes for real-time visual tracking. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 1090–1097 (IEEE, 2014).

  • Moreno, D., Son, K. & Taubin, G. Embedded phase shifting: robust phase shifting with embedded signals. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 2301–2309 (IEEE, 2015).

  • Hu, R. et al. Natural language object retrieval. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 4555–4564 (IEEE, 2016).

  • Fanello, S. R et al. Ultrastereo: efficient learning-based matching for active stereo systems. In Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 6535–6544 (IEEE, 2017).

  • Nguyen, P., Liu, T., Prasad, G. & Han, B. Weakly supervised action localization by sparse temporal pooling network. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 6752–6761 (IEEE, 2018).

  • Zhang, J. & Peng, Y. Object-aware aggregation with bidirectional temporal graph for video captioning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 8327–8336 (IEEE, 2019).

  • Raheja, J. L., Das, K. & Chaudhary, A. An efficient real time method of fingertip detection. In Proc. 7th International Conference on Trends in Industrial Measurements and Automation 447–450 (TIMA, 2011).

  • Hammarfelt, B. Linking science to technology: the ‘patent paper citation’ and the rise of patentometrics in the 1980s. J. Doc. 77, 1413–1429 (2021).

  • Ahmadpoor, M. & Jones, B. F. The dual frontier: patented inventions and prior scientific advance. Science 357, 583–587 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • IEEE Computer Society Team. CVPR 2021 Report Identifies 5 Trend Areas (IEEE, 2021).

  • Sinha, A. et al. An overview of Microsoft Academic Service (MAS) and applications. In Proc. 24th International Conference on World Wide Web 243–246 (2015).

  • Marx, M. & Fuegi, A. Reliance on science by inventors: hybrid extraction of in-text patent-to-article citations. J. Econ. Manag. Strategy 31, 369–392 (2022).

    Article 

    Google Scholar
     

  • Finardi, U. Time relations between scientific production and patenting of knowledge: the case of nanotechnologies. Scientometrics 89, 37–50 (2011).

  • Abdalla, M. & Abdalla, M. The grey hoodie project: big tobacco, big tech, and the threat on academic integrity. In Proc. 2021 AAAI/ACM Conference on AI, Ethics, and Society 287–297 (2021).

  • RELATED ARTICLES

    Most Popular

    Recent Comments