Sunday, April 13, 2025
No menu items!
HomeNatureComplete sequencing of ape genomes

Complete sequencing of ape genomes

  • International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Venter, J. C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Blanchette, M., Green, E. D., Miller, W. & Haussler, D. Reconstructing large regions of an ancestral mammalian genome in silico. Genome Res. 14, 2412–2423 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

    Article 

    Google Scholar
     

  • Gordon, D. et al. Long-read sequence assembly of the gorilla genome. Science 352, aae0344 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prüfer, K. et al. The bonobo genome compared with the chimpanzee and human genomes. Nature 486, 527–531 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mao, Y. et al. A high-quality bonobo genome refines the analysis of hominid evolution. Nature 594, 77–81 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, Y. et al. Phylogenomic analyses provide insights into primate evolution. Science 380, 913–924 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Nurk, S. et al. The complete sequence of a human genome. Science 376, 44–53 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rhie, A. et al. The complete sequence of a human Y chromosome. Nature 621, 344–354 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Makova, K. D. et al. The complete sequence and comparative analysis of ape sex chromosomes. Nature https://doi.org/10.1038/s41586-024-07473-2 (2024).

  • Rautiainen, M. et al. Telomere-to-telomere assembly of diploid chromosomes with Verkko. Nat. Biotechnol. 41, 1474–1482 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, H., Asri, M., Lucas, J., Koren, S. & Li, H. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. Nat. Methods https://doi.org/10.1038/s41592-024-02269-8 (2024).

  • Rhie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 21, 245 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Armstrong, J. et al. Progressive Cactus is a multiple-genome aligner for the thousand-genome era. Nature 587, 246–251 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herrero, J. et al. Ensembl comparative genomics resources. Database 2016, bav096 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garrison, E. et al. Building pangenome graphs. Nat. Methods 21, 2008–2012 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Rivas-González, I., Schierup, M. H., Wakeley, J. & Hobolth, A. TRAILS: tree reconstruction of ancestry using incomplete lineage sorting. PLoS Genet. 20, e1010836 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rivas-González, I. et al. Pervasive incomplete lineage sorting illuminates speciation and selection in primates. Science 380, eabn4409 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • DeGiorgio, M., Huber, C. D., Hubisz, M. J., Hellmann, I. & Nielsen, R. SweepFinder2: increased sensitivity, robustness and flexibility. Bioinformatics 32, 1895–1897 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • DeGiorgio, M. & Szpiech, Z. A. A spatially aware likelihood test to detect sweeps from haplotype distributions. PLoS Genet. 18, e1010134 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471–475 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Manuel, M. et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science 354, 477–481 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pawar, H. et al. Ghost admixture in eastern gorillas. Nat. Ecol. Evol. 7, 1503–1514 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cagan, A. et al. Natural selection in the great apes. Mol. Biol. Evol. 33, 3268–3283 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frankish, A. et al. GENCODE: reference annotation for the human and mouse genomes in 2023. Nucleic Acids Res. 51, D942–D949 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Dennis, M. Y. et al. Evolution of human-specific neural SRGAP2 genes by incomplete segmental duplication. Cell 149, 912–922 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt, E. R., Kupferman, J. V., Stackmann, M. & Polleux, F. The human-specific paralogs SRGAP2B and SRGAP2C differentially modulate SRGAP2A-dependent synaptic development. Sci. Rep. 9, 18692 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonacci, F. et al. Palindromic GOLGA8 core duplicons promote chromosome 15q13.3 microdeletion and evolutionary instability. Nat. Genet. 46, 1293–1302 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect notch signaling and cortical neurogenesis. Cell 173, 1356–1369 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishiura, H. et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat. Genet. 51, 1222–1232 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Walker, J. A. et al. Orangutan Alu quiescence reveals possible source element: support for ancient backseat drivers. Mobile DNA 3, 8 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez, O. L., Sharp, A. J. & Watson, C. T. Limitations of lymphoblastoid cell lines for establishing genetic reference datasets in the immunoglobulin loci. PLoS ONE 16, e0261374 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sirupurapu, V., Safonova, Y. & Pevzner, P. A. Gene prediction in the immunoglobulin loci. Genome Res. 32, 1152–1169 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rodriguez, O. L. et al. Genetic variation in the immunoglobulin heavy chain locus shapes the human antibody repertoire. Nat. Commun. 14, 4419 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Radwan, J., Babik, W., Kaufman, J., Lenz, T. L. & Winternitz, J. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet. 36, 298–311 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Heijmans, C. M., de Groot, N. G. & Bontrop, R. E. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. Int. J. Immunogenet. 47, 243–260 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Lenz, T. L., Spirin, V., Jordan, D. M. & Sunyaev, S. R. Excess of deleterious mutations around HLA genes reveals evolutionary cost of balancing selection. Mol. Biol. Evol. 33, 2555–2564 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lenz, T. L. in HLA Typing. Methods in Molecular Biology Vol. 2809 (ed. Boegal, S.) 1–18 (Humana, 2024).

  • Mao, Y. et al. Structurally divergent and recurrently mutated regions of primate genomes. Cell 187, 1547–1562 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fortier, A. L. & Pritchard, J. K. Ancient trans-species polymorphism at the major histocompatibility complex in primates. Preprint at bioRxiv https://doi.org/10.1101/2022.06.28.497781 (2022).

  • Yunis, J. J. & Prakash, O. The origin of man: a chromosomal pictorial legacy. Science 215, 1525–1530 (1982).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Porubsky, D. et al. Recurrent inversion toggling and great ape genome evolution. Nat. Genet. 52, 849–858 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Müller, S., Finelli, P., Neusser, M. & Wienberg, J. The evolutionary history of human chromosome 7. Genomics 84, 458–467 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Kehrer-Sawatzki, H., Szamalek, J. M., Tänzer, S., Platzer, M. & Hameister, H. Molecular characterization of the pericentric inversion of chimpanzee chromosome 11 homologous to human chromosome 9. Genomics 85, 542–550 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Carbone, L., Ventura, M., Tempesta, S., Rocchi, M. & Archidiacono, N. Evolutionary history of chromosome 10 in primates. Chromosoma 111, 267–272 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Cardone, M. F. et al. Evolutionary history of chromosome 11 featuring four distinct centromere repositioning events in Catarrhini. Genomics 90, 35–43 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Kehrer-Sawatzki, H., Sandig, C., Goidts, V. & Hameister, H. Breakpoint analysis of the pericentric inversion between chimpanzee chromosome 10 and the homologous chromosome 12 in humans. Cytogenet. Genome Res. 108, 91–97 (2004).

    Article 

    Google Scholar
     

  • Kehrer-Sawatzki, H. et al. Molecular characterization of the pericentric inversion that causes differences between chimpanzee chromosome 19 and human chromosome 17. Am. J. Hum. Genet. 71, 375–388 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cardone, M. F. et al. Hominoid chromosomal rearrangements on 17q map to complex regions of segmental duplication. Genome Biol. 9, R28 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goidts, V., Szamalek, J. M., Hameister, H. & Kehrer-Sawatzki, H. Segmental duplication associated with the human-specific inversion of chromosome 18: a further example of the impact of segmental duplications on karyotype and genome evolution in primates. Hum. Genet. 115, 116–122 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Misceo, D. et al. Evolutionary history of chromosome 20. Mol. Biol. Evol. 22, 360–366 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Ventura, M. et al. Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee. Genome Res. 21, 1640–1649 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Locke, D. P. et al. Comparative and demographic analysis of orang-utan genomes. Nature 469, 529–533 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capozzi, O. et al. A comprehensive molecular cytogenetic analysis of chromosome rearrangements in gibbons. Genome Res. 22, 2520–2528 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Catacchio, C. R. et al. Inversion variants in human and primate genomes. Genome Res. 28, 910–920 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kronenberg, Z. N. et al. High-resolution comparative analysis of great ape genomes. Science 360, eaar6343 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maggiolini, F. A. M. et al. Single-cell strand sequencing of a macaque genome reveals multiple nested inversions and breakpoint reuse during primate evolution. Genome Res. 30, 1680–1693 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mercuri, L. et al. A high-resolution map of small-scale inversions in the gibbon genome. Genome Res. 32, 1941–1951 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nuttle, X. et al. Emergence of a Homo sapiens-specific gene family and chromosome 16p11.2 CNV susceptibility. Nature 536, 205–209 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paparella, A. et al. Structural variation evolution at the 15q11-q13 disease-associated locus. Int. J. Mol. Sci. 24, 15818 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zody, M. C. et al. Evolutionary toggling of the MAPT 17q21. 31 inversion region. Nat. Genet. 40, 1076–1083 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maggiolini, F. A. et al. Genomic inversions and GOLGA core duplicons underlie disease instability at the 15q25 locus. PLoS Genet. 15, e1008075 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antonacci, F. et al. Characterization of six human disease-associated inversion polymorphisms. Hum. Mol. Genet. 18, 2555–2566 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mangan, R. J. et al. Adaptive sequence divergence forged new neurodevelopmental enhancers in humans. Cell 185, 4587–4603 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gedman, G. L. et al. Convergent gene expression highlights shared vocal motor microcircuitry in songbirds and humans. Preprint at bioRxiv https://doi.org/10.1101/2022.07.01.498177 (2022).

  • Lovell, P. V. et al. ZEBrA: zebra finch expression brain atlas—a resource for comparative molecular neuroanatomy and brain evolution studies. J. Comp. Neurol. 528, 2099–2131 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirilenko, B. M. et al. Integrating gene annotation with orthology inference at scale. Science 380, eabn3107 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willcox, B. J. et al. FOXO3A genotype is strongly associated with human longevity. Proc. Natl Acad. Sci. USA 105, 13987–13992 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y. et al. Continuous-trait probabilistic model for comparing multi-species functional genomic data. Cell Syst. 7, 208–218 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weissensteiner, M. H. et al. Accurate sequencing of DNA motifs able to form alternative (non-B) structures. Genome Res. 33, 907–922 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Elango, N. & Yi, S. V. DNA methylation and structural and functional bimodality of vertebrate promoters. Mol. Biol. Evol. 25, 1602–1608 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Jeong, H. et al. Evolution of DNA methylation in the human brain. Nat. Commun. 12, 2021 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Sluis, M. et al. Human NORs, comprising rDNA arrays and functionally conserved distal elements, are located within dynamic chromosomal regions. Genes Develop. 33, 1688–1701 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guarracino, A. et al. Recombination between heterologous human acrocentric chromosomes. Nature 617, 335–343 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiatante, G., Giannuzzi, G., Calabrese, F. M., Eichler, E. E. & Ventura, M. Centromere destiny in dicentric chromosomes: new insights from the evolution of human chromosome 2 ancestral centromeric region. Mol. Biol. Evol. 34, 1669–1681 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Potapova, T. A. et al. Epigenetic control and inheritance of rDNA arrays. Preprint at bioRxiv https://doi.org/10.1101/2024.09.13.612795 (2024).

  • Eickbush, T. H. & Eickbush, D. G. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175, 477–485 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Agrawal, S. & Ganley, A. R. The conservation landscape of the human ribosomal RNA gene repeats. PLoS ONE 13, e0207531 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logsdon, G. A. et al. The variation and evolution of complete human centromeres. Nature 629, 136–145 (2024).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheeseman, I. M. The kinetochore. Cold Spring Harb. Perspect. Biol. 6, a015826 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musacchio, A. & Desai, A. A molecular view of kinetochore assembly and function. Biology 6, 5 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logsdon, G. A. et al. The structure, function and evolution of a complete human chromosome 8. Nature 593, 101–107 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gershman, A. et al. Epigenetic patterns in a complete human genome. Science 376, eabj5089 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ventura, M. et al. The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2. Genome Res. 22, 1036–1049 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lisitsyn, N. et al. Isolation of rapidly evolving genomic sequences: construction of a differential library and identification of a human DNA fragment that does not hybridize to chimpanzee DNA. Biomed. Sci. 1, 513–516 (1990).

    PubMed 

    Google Scholar
     

  • Koga, A., Hirai, Y., Hara, T. & Hirai, H. Repetitive sequences originating from the centromere constitute large-scale heterochromatin in the telomere region in the siamang, a small ape. Heredity 109, 180–187 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Novo, C. et al. The heterochromatic chromosome caps in great apes impact telomere metabolism. Nucleic Acids Res. 41, 4792–4801 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirai, H. et al. Chimpanzee chromosomes: retrotransposable compound repeat DNA organization (RCRO) and its influence on meiotic prophase and crossing-over. Cytogenet. Genome Res. 108, 248–254 (2004).

    Article 

    Google Scholar
     

  • Wallace, B. & Hulten, M. Meiotic chromosome pairing in the normal human female. Ann. Hum. Genet. 49, 215–226 (1985).

    Article 
    PubMed 

    Google Scholar
     

  • Marques-Bonet, T. & Eichler, E.E. The evolution of human segmental duplications and the core duplicon hypothesis. Cold Spring Harb. Symp. Quant. Biol. 74, 355–362 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheng, Z. et al. A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature 437, 88–93 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Integrated analysis of the complete sequence of a macaque genome. Nature https://doi.org/10.1038/s41586-025-08596-w (2025).

  • Marques-Bonet, T. et al. A burst of segmental duplications in the genome of the African great ape ancestor. Nature 457, 877–881 (2009).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharp, A. J. et al. A recurrent 15q13.3 microdeletion syndrome associated with mental retardation and seizures. Nat. Genet. 40, 322–328 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, Z. et al. Ancestral reconstruction of segmental duplications reveals punctuated cores of human genome evolution. Nat. Genet. 39, 1361–1368 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Bailey, J. A. et al. Recent segmental duplications in the human genome. Science 297, 1003–1007 (2002).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Sudmant, P. H. et al. Evolution and diversity of copy number variation in the great ape lineage. Genome Res. 23, 1373–1382 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McStay, B. The p-arms of human acrocentric chromosomes play by a different set of rules. Ann. Rev. Genomics Hum. Genet. 24, 63–83 (2023).

    Article 

    Google Scholar
     

  • Ferguson-Smith, M. A. & Trifonov, V. Mammalian karyotype evolution. Nat. Rev. Genet. 8, 950–962 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • King, C. A model for transposon-based eucaryote regulatory evolution. J. Theor. Biol. 114, 447–462 (1985).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Navarro, A. & Barton, N. H. Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science 300, 321–324 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Guitart, X. et al. Independent expansion, selection and hypervariability of the TBC1D3 gene family in humans. Genome Res. 34, 1798–1810 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vollger, M. R. et al. Segmental duplications and their variation in a complete human genome. Science 376, eabj6965 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moralli, D. & Monaco, Z. L. Gene expressing human artificial chromosome vectors: advantages and challenges for gene therapy. Exp. Cell. Res. 390, 111931 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Logsdon, G. A. & Eichler, E. E. The dynamic structure and rapid evolution of human centromeric satellite DNA. Genes 14, 92 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hoyt, S. J. et al. From telomere to telomere: the transcriptional and epigenetic state of human repeat elements. Science 376, eabk3112 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hirai, H. et al. Structural variations of subterminal satellite blocks and their source mechanisms as inferred from the meiotic configurations of chimpanzee chromosome termini. Chromosome Res. 27, 321–332 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Koren, S. et al. Gapless assembly of complete human and plant chromosomes using only nanopore sequencing. Genome Res. 34, 1919–1930 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Schoch, C. L. et al. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database 2020, baaa062 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hey, J. The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Mol. Biol. Evol. 27, 921–933 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Roos, C. in Evolution of Gibbons and Siamang. Developments in Primatology: Progress and Prospects (eds Reichard, U. et al.) 151–165 (Springer, 2016).

  • Porubsky, D. et al. SVbyEye: A visual tool to characterize structural variation among whole-genome assemblies. Preprint at bioRxiv https://doi.org/10.1101/2024.09.11.612418 (2024).

  • Ventura, M. et al. Recurrent sites for new centromere seeding. Genome Res. 14, 1696–1703 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nassar, L. R. et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 51, D1188–D1195 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Zemke, N. R. et al. Conserved and divergent gene regulatory programs of the mammalian neocortex. Nature 624, 390–402 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sweeten, A. P., Schatz, M. C. & Phillippy, A. M. ModDotPlot—rapid and interactive visualization of complex repeats. Bioinformatics 40, btae493 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kille, B., Garrison, E., Treangen, T. J. & Phillippy, A. M. Minmers are a generalization of minimizers that enable unbiased local Jaccard estimation. Bioinformatics 39, btad512 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments