Wednesday, April 30, 2025
No menu items!
HomeNatureComparative connectomics of Drosophila descending and ascending neurons

Comparative connectomics of Drosophila descending and ascending neurons

  • Takemura, S.-Y. et al. A connectome of the male Drosophila ventral nerve cord. eLife 13, https://doi.org/10.7554/eLife.97769.1 (2024).

    Article 

    Google Scholar
     

  • Dorkenwald, S. et al. Neuronal wiring diagram of an adult brain. Nature 634, 124–138 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schlegel, P. et al. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 634, 139–152 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Azevedo, A. et al. Connectomic reconstruction of a female Drosophila ventral nerve cord. Nature 631, 360–368 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Namiki, S., Dickinson, M. H., Wong, A. M., Korff, W. & Card, G. M. The functional organization of descending sensory-motor pathways in Drosophila. eLife 7, e34272 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McKellar, C. E. et al. Threshold-based ordering of sequential actions during Drosophila courtship. Curr. Biol. 29, 426–434 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lillvis, J. L. et al. Nested neural circuits generate distinct acoustic signals during Drosophila courtship. Curr. Biol. 34, 808–824 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F., Wang, K., Forknall, N., Parekh, R. & Dickson, B. J. Circuit and behavioral mechanisms of sexual rejection by Drosophila females. Curr. Biol. 30, 3749–3760 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Strausfeld, N. J., Seyan, H. S. & Milde, J. J. The neck motor system of the fly Calliphora erythrocephala. J. Comp. Physiol. 160, 205–224 (1987).

    Article 

    Google Scholar
     

  • Court, R. et al. Virtual Fly Brain—an interactive atlas of the nervous system. Front. Physiol. 14, 1076533 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Simpson, J. H. Descending control of motor sequences in Drosophila. Curr. Opin. Neurobiol. 84, 102822 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hampel, S., Franconville, R., Simpson, J. H. & Seeds, A. M. A neural command circuit for grooming movement control. eLife 4, e08758 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guo, L., Zhang, N. & Simpson, J. H. Descending neurons coordinate anterior grooming behavior in Drosophila. Curr. Biol. 32, 823–833 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rayshubskiy, A. et al. Neural circuit mechanisms for steering control in walking Drosophila. eLife 13, https://doi.org/10.7554/eLife.102230.1 (2024).

    Article 

    Google Scholar
     

  • Bidaye, S. S., Machacek, C., Wu, Y. & Dickson, B. J. Neuronal control of Drosophila walking direction. Science 344, 97–101 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lima, S. Q. & Miesenböck, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ache, J. M., Namiki, S., Lee, A., Branson, K. & Card, G. M. State-dependent decoupling of sensory and motor circuits underlies behavioral flexibility in Drosophila. Nat. Neurosci. 22, 1132–1139 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Suver, M. P., Huda, A., Iwasaki, N., Safarik, S. & Dickinson, M. H. An array of descending visual interneurons encoding self-motion in Drosophila. J. Neurosci. 36, 11768–11780 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cande, J. et al. Optogenetic dissection of descending behavioral control in Drosophila. eLife 7, e34275 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aymanns, F., Chen, C.-L. & Ramdya, P. Descending neuron population dynamics during odor-evoked and spontaneous limb-dependent behaviors. eLife 11, e81527 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, C.-L. et al. Ascending neurons convey behavioral state to integrative sensory and action selection brain regions. Nat. Neurosci. 26, 682–695 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cheong, H. S. J. et al. Transforming descending input into behavior: the organization of premotor circuits in the Drosophila male adult nerve cord connectome. eLife 13, https://doi.org/10.7554/eLife.96084.1 (2024).

    Article 

    Google Scholar
     

  • Marin, E. C. et al. Systematic annotation of a complete adult male Drosophila nerve cord connectome reveals principles of functional organisation. eLife 13, https://doi.org/10.7554/elife.97766.1 (2024).

    Article 

    Google Scholar
     

  • Pavlou, H. J. & Goodwin, S. F. Courtship behavior in Drosophila melanogaster: towards a ‘courtship connectome’. Curr. Opin. Neurobiol. 23, 76–83 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auer, T. O. & Benton, R. Sexual circuitry in Drosophila. Curr. Opin. Neurobiol. 38, 18–26 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, F. et al. Neural circuitry linking mating and egg laying in Drosophila females. Nature 579, 101–105 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K. et al. Neural circuit mechanisms of sexual receptivity in Drosophila females. Nature 589, 577–581 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoopfer, E. D., Jung, Y., Inagaki, H. K., Rubin, G. M. & Anderson, D. J. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila. eLife 4, e11346 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Philipsborn, A. C. et al. Neuronal control of Drosophila courtship song. Neuron 69, 509–522 (2011).

    Article 

    Google Scholar
     

  • Shiozaki, H. M. et al. Combinatorial circuit dynamics orchestrate flexible motor patterns in Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2022.12.14.520499 (2023).

  • Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phelps, J. S. et al. Reconstruction of motor control circuits in adult Drosophila using automated transmission electron microscopy. Cell 184, 759–774 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meissner, G. W. et al. A searchable image resource of GAL4 driver expression patterns with single neuron resolution. eLife 12, e80660 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zung, J. L. et al. An updated catalogue of split-GAL4 driver lines for descending neurons in Drosophila melanogaster. Preprint at bioRxiv https://doi.org/10.1101/2025.02.22.639679 (2025).

  • Braun, J., Hurtak, F., Wang-Chen, S. & Ramdya, P. Descending networks transform command signals into population motor control. Nature 630, 686–694 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ito, K. et al. A systematic nomenclature for the insect brain. Neuron 81, 755–765 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eichler, K. et al. Somatotopic organization among parallel sensory pathways that promote a grooming sequence in Drosophila. eLife 12, https://doi.org/10.7554/eLife.87602.2 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Patella, P. & Wilson, R. I. Functional maps of mechanosensory features in the Drosophila brain. Curr. Biol. 28, 1189–1203 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pacheco, D. A., Thiberge, S. Y., Pnevmatikakis, E. & Murthy, M. Auditory activity is diverse and widespread throughout the central brain of Drosophila. Nat. Neurosci. 24, 93–104 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlegel, P. et al. Information flow, cell types and stereotypy in a full olfactory connectome. eLife 10, e66018 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marin, E. C. et al. Connectomics analysis reveals first-, second-, and third-order thermosensory and hygrosensory neurons in the adult Drosophila brain. Curr. Biol. 30, 3167–3182 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Namiki, S. & Kanzaki, R. Comparative neuroanatomy of the lateral accessory lobe in the insect brain. Front. Physiol. 7, 244 (2016).

  • Yang, H. H. et al. Fine-grained descending control of steering in walking Drosophila. Cell 187, 6290–6308 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eckstein, N. et al. Neurotransmitter classification from electron microscopy images at synaptic sites in Drosophila melanogaster. Cell 187, 2574–2594 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winding, M. et al. The connectome of an insect brain. Science 379, eadd9330 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kauer, I., Borst, A. & Haag, J. Complementary motion tuning in frontal nerve motor neurons of the blowfly. J. Comp. Physiol. 201, 411–426 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kee, T., Sanda, P., Gupta, N., Stopfer, M. & Bazhenov, M. Feed-forward versus feedback inhibition in a basic olfactory circuit. PLoS Comput. Biol. 11, e1004531 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luo, L. Architectures of neuronal circuits. Science 373, eabg7285 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seeds, A. M. et al. A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. eLife 3, e02951 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lesser, E. et al. Synaptic architecture of leg and wing premotor control networks in Drosophila. Nature 631, 369–377 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, J. Y., Kanai, M. I., Demir, E., Jefferis, G. S. X. E. & Dickson, B. J. Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 20, 1602–1614 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cachero, S., Ostrovsky, A. D., Yu, J. Y., Dickson, B. J. & Jefferis, G. S. X. E. Sexual dimorphism in the fly brain. Curr. Biol. 20, 1589–1601 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Possidente, D. R. & Murphey, R. K. Genetic control of sexually dimorphic axon morphology in Drosophila sensory neurons. Dev. Biol. 132, 448–457 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Clowney, J. E., Iguchi, S., Bussell, J. J., Scheer, E. & Ruta, V. Multimodal chemosensory circuits controlling male courtship in Drosophila. Neuron 87, 1036–1049 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shirangi, T. R., Wong, A. M., Truman, J. W. & Stern, D. L. Doublesex regulates the connectivity of a neural circuit controlling Drosophila male courtship song. Dev. Cell 37, 533–544 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mezzera, C. et al. Ovipositor extrusion promotes the transition from courtship to copulation and signals female acceptance in Drosophila melanogaster. Curr. Biol. 33, 5034 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Robinett, C. C., Vaughan, A. G., Knapp, J.-M. & Baker, B. S. Sex and the single cell. II. There is a time and place for sex. PLoS Biol. 8, e1000365 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kimura, K.-I., Sato, C., Koganezawa, M. & Yamamoto, D. Drosophila ovipositor extension in mating behavior and egg deposition involves distinct sets of brain interneurons. PLoS One 10, e0126445 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connolly, K. & Cook, R. Rejection responses by female Drosophila melanogaster: their ontogeny, causality and effects upon the behaviour of the courting male. Behaviour 44, 142–166 (1973).

    Article 

    Google Scholar
     

  • Coleman, R. T. et al. A modular circuit coordinates the diversification of courtship strategies. Nature 635, 142–150 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mann, K., Gordon, M. D. & Scott, K. A pair of interneurons influences the choice between feeding and locomotion in Drosophila. Neuron 79, 754–765 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsubouchi, A. et al. Topological and modality-specific representation of somatosensory information in the fly brain. Science 358, 615–623 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujiwara, T., Brotas, M. & Chiappe, M. E. Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila. Neuron 110, 2124–2138 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poulet, J. F. A. & Hedwig, B. The cellular basis of a corollary discharge. Science 311, 518–522 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheong, H. S. J. et al. Organization of an ascending circuit that conveys flight motor state in Drosophila. Curr. Biol. 34, 1059–1075 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S.-Y. J., Dallmann, C. J., Cook, A., Tuthill, J. C. & Agrawal, S. Divergent neural circuits for proprioceptive and exteroceptive sensing of the leg. Preprint at bioRxiv https://doi.org/10.1101/2024.04.23.590808 (2024).

  • Sapkal, N. et al. Neural circuit mechanisms underlying context-specific halting in Drosophila. Nature 634, 191–200 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dallmann, C. J. et al. Presynaptic inhibition selectively suppresses leg proprioception in behaving Drosophila. Preprint at bioRxiv https://doi.org/10.1101/2023.10.20.563322 (2024).

  • Lappalainen, J. K. et al. Connectome-constrained networks predict neural activity across the fly visual system. Nature 634, 1132–1140 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valdes-Aleman, J. et al. Comparative connectomics reveals how partner identity, location, and activity specify synaptic connectivity in Drosophila. Neuron 109, 105–122 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gerhard, S., Andrade, I., Fetter, R. D., Cardona, A. & Schneider-Mizell, C. M. Conserved neural circuit structure across larval development revealed by comparative connectomics. eLife 6, e29089 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nern, A. et al. Connectome-driven neural inventory of a complete visual system. Nature https://doi.org/10.1038/s41586-025-08746-0 (2025).

  • Arendt, D. & Nübler-Jung, K. Comparison of early nerve cord development in insects and vertebrates. Development 126, 2309–2325 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Costa, M., Manton, J. D., Ostrovsky, A. D., Prohaska, S. & Jefferis, G. S. X. E. NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron 91, 293–311 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tirian, L. & Dickson, B. J. The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system. Preprint at bioRxiv https://doi.org/10.1101/198648 (2017).

  • Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Meissner, G. W. et al. A split-GAL4 driver line resource for Drosophila CNS cell types. eLife 13,https://doi.org/10.7554/elife.98405 (2024).

    Article 

    Google Scholar
     

  • Clements, J. et al. NeuronBridge: an intuitive web application for neuronal morphology search across large data sets. BMC Bioinformatics 25, 114 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Court, R. et al. A systematic nomenclature for the Drosophila ventral nerve cord. Neuron 107, 1071–1079 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buhmann, J. et al. Automatic detection of synaptic partners in a whole-brain Drosophila electron microscopy data set. Nat. Methods 18, 771–774 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heinrich, L., Funke, J., Pape, C., Nunez-Iglesias, J. & Saalfeld, S. Synaptic cleft segmentation in non-isotropic volume electron microscopy of the complete Drosophila brain. In Medical Image Computing and Computer Assisted Intervention—MICCAI 2018 (eds Frangi, A. et al.) 317–325 (Springer, 2018).

  • Scheffer, L. K. et al. A connectome and analysis of the adult Drosophila central brain. eLife 9, e57443 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maitin-Shepard, J. et al. google/neuroglancer:github.com/google/neuroglancer. Github https://github.com/google/neuroglancer (2021).

  • Bates, A. S. et al. The natverse, a versatile toolbox for combining and analysing neuroanatomical data. eLife 9, e53350 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments