Tuesday, January 14, 2025
No menu items!
HomeNatureCommon occurrences of subsurface heatwaves and cold spells in ocean eddies

Common occurrences of subsurface heatwaves and cold spells in ocean eddies

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    ADS 

    Google Scholar
     

  • Frolicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • Xu, T. et al. An increase in marine heatwaves without significant changes in surface ocean temperature variability. Nat. Commun. 13, 7396 (2022).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Welch, H. et al. Impacts of marine heatwaves on top predator distributions are variable but predictable. Nat. Commun. 14, 5188 (2023).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Jacox, M. G. et al. Global seasonal forecasts of marine heatwaves. Nature 604, 486–490 (2022).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Holbrook, N. J. et al. Keeping pace with marine heatwaves. Nat. Rev. Earth Environ. 1, 482–493 (2020).

    ADS 

    Google Scholar
     

  • Martin, A. et al. The oceans’ twilight zone must be studied now, before it is too late. Nature 580, 26–28 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Schlegel, R. W., Darmaraki, S., Benthuysen, J. A., Filbee-Dexter, K. & Oliver, E. C. J. Marine cold-spells. Prog. Oceanogr. 198, 102684 (2021).


    Google Scholar
     

  • Guo, X. et al. Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model. Nat. Clim. Change 12, 179–186 (2022).

    ADS 

    Google Scholar
     

  • Hobday, A. J. et al. With the arrival of El Niño, prepare for stronger marine heatwaves. Nature 621, 38–41 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137 (2021).

    ADS 

    Google Scholar
     

  • Cornec, M. et al. Deep chlorophyll maxima in the global ocean: occurrences, drivers and characteristics. Global Biogeochem. Cycles 35, e2020GB006759 (2021).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Oliver, E. C. J. et al. Marine heatwaves. Ann. Rev. Mar. Sci. 13, 313–342 (2021).


    Google Scholar
     

  • Hu, S. et al. Observed strong subsurface marine heatwaves in the tropical western Pacific Ocean. Environ. Res. Lett. 16, 104024 (2021).

    ADS 

    Google Scholar
     

  • Scannell, H. A., Johnson, G. C., Thompson, L., Lyman, J. M. & Riser, S. C. Subsurface evolution and persistence of marine heatwaves in the northeast Pacific. Geophys. Res. Lett. 47, e2020GL090548 (2020).

  • Sun, D., Li, F., Jing, Z., Hu, S. & Zhang, B. Frequent marine heatwaves hidden below the surface of the global ocean. Nat. Geosci. 16, 1099–1104 (2023).

    ADS 
    CAS 

    Google Scholar
     

  • Gruber, N., Boyd, P. W., Frolicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Bian, C., Jing, Z., Wang, H. & Wu, L. Scale‐dependent drivers of marine heatwaves globally. Geophys. Res. Lett. 51, e2023GL107306 (2024).

  • Sen Gupta, A. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 19359 (2020).

    ADS 
    PubMed Central 

    Google Scholar
     

  • Ren, X., Liu, W., Capotondi, A., Amaya, D. J. & Holbrook, N. J. The Pacific Decadal Oscillation modulated marine heatwaves in the northeast Pacific during past decades. Commun. Earth Environ. 4, 218 (2023).

  • Schaeffer, A., Sen Gupta, A. & Roughan, M. Seasonal stratification and complex local dynamics control the sub-surface structure of marine heatwaves in eastern Australian coastal waters. Commun. Earth Environ. 4, 304 (2023).

  • Chelton, D. B., Schlax, M. G. & Samelson, R. M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 91, 167–216 (2011).

    ADS 

    Google Scholar
     

  • Frenger, I., Münnich, M., Gruber, N. & Knutti, R. Southern Ocean eddy phenomenology. J. Geophys. Res. Oceans 120, 7413–7449 (2015).

  • Beech, N. et al. Long-term evolution of ocean eddy activity in a warming world. Nat. Clim. Change 12, 910–917 (2022).

    ADS 

    Google Scholar
     

  • Wang, H., Qiu, B., Liu, H. & Zhang, Z. Doubling of surface oceanic meridional heat transport by non-symmetry of mesoscale eddies. Nat. Commun. 14, 5460 (2023).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • He, Q., Zhan, H. & Cai, S. Anticyclonic eddies enhance the winter barrier layer and surface cooling in the Bay of Bengal. J. Geophys. Res. Oceans 125, e2020JC016524 (2020).

    ADS 

    Google Scholar
     

  • Villas Bôas, A. B., Sato, O. T., Chaigneau, A. & Castelão, G. P. The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean. Geophys. Res. Lett. 42, 1856–1862 (2015).

    ADS 

    Google Scholar
     

  • McGillicuddy, D. et al. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263–266 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Sci. Rep. 6, 24349 (2016).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • He, Q. et al. Enhancing impacts of mesoscale eddies on Southern Ocean temperature variability and extremes. Proc. Natl Acad. Sci. USA 120, e2302292120 (2023).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Wyatt, A. S. J. et al. Hidden heatwaves and severe coral bleaching linked to mesoscale eddies and thermocline dynamics. Nat. Commun. 14, 25 (2023).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Bian, C. et al. Oceanic mesoscale eddies as crucial drivers of global marine heatwaves. Nat. Commun. 14, 2970 (2023).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Fragkopoulou, E. et al. Marine biodiversity exposed to prolonged and intense subsurface heatwaves. Nat. Clim. Change 13, 1114–1121 (2023).

    ADS 

    Google Scholar
     

  • Nakano, H., Tsujino, H. & Sakamoto, K. Tracer transport in cold-core rings pinched off from the Kuroshio Extension in an eddy-resolving ocean general circulation model. J. Geophys. Res. Oceans 118, 5461–5488 (2013).

    ADS 

    Google Scholar
     

  • Martínez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Change 11, 397–403 (2021).

    ADS 

    Google Scholar
     

  • Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Change 10, 1116–1123 (2020).

    ADS 

    Google Scholar
     

  • Johnson, G. C. & Lyman, J. M. Warming trends increasingly dominate global ocean. Nat. Clim. Change 10, 757–761 (2020).

    ADS 

    Google Scholar
     

  • Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • Roemmich, D. et al. Unabated planetary warming and its ocean structure since 2006. Nat. Clim. Change 5, 240–245 (2015).

    ADS 

    Google Scholar
     

  • He, Q. et al. Thermal imprints of mesoscale eddies in the global ocean. J. Phys. Oceanogr. 54, 1991–2009 (2024).


    Google Scholar
     

  • Zhang, Z., Wang, W. & Qiu, B. Oceanic mass transport by mesoscale eddies. Science 345, 322–324 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • Zhang, Y., Du, Y., Feng, M. & Hobday, A. J. Vertical structures of marine heatwaves. Nat. Commun. 14, 6483 (2023).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Elzahaby, Y. & Schaeffer, A. Observational insight into the subsurface anomalies of marine heatwaves. Front. Mar. Sci. 6, 745 (2019).

  • Le Grix, N., Zscheischler, J., Rodgers, K. B., Yamaguchi, R. & Frölicher, T. L. Hotspots and drivers of compound marine heatwaves and low net primary production extremes. Biogeosciences 19, 5807–5835 (2022).

    ADS 

    Google Scholar
     

  • Burger, F. A., Terhaar, J. & Frolicher, T. L. Compound marine heatwaves and ocean acidity extremes. Nat. Commun. 13, 4722 (2022).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Benitez-Nelson, C. R. et al. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. Science 316, 1017–1021 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • Atkins, J., Andrews, O. & Frenger, I. Quantifying the contribution of ocean mesoscale eddies to low oxygen extreme events. Geophys. Res. Lett. 49, e2022GL098672 (2022).

  • Boyer, T. P. et al. NCEI standard product: World Ocean Database (WOD) (NOAA National Centers for Environmental Information dataset, accessed 21 October 2021); www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:NCEI-WOD

  • Pegliasco, C. et al. META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry. Earth Syst. Sci. Data 14, 1087–1107 (2022).

    ADS 

    Google Scholar
     

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS 

    Google Scholar
     

  • Gupta, H., Sil, S., Gangopadhyay, A. & Gawarkiewicz, G. Observed surface and subsurface marine heat waves in the Bay of Bengal from in-situ and high-resolution satellite data. Clim. Dyn. 62, 203–221 (2023).


    Google Scholar
     

  • Swart, N. C., Gille, S. T., Fyfe, J. C. & Gillett, N. P. Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nat. Geosci. 11, 836–841 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • He, Q. et al. A new assessment of mesoscale eddies in the South China Sea: surface features, three-dimensional structures and thermohaline transports. J. Geophys. Res. Oceans 123, 4906–4929 (2018).

    ADS 

    Google Scholar
     

  • Zhao, Z. & Marin, M. A MATLAB toolbox to detect and analyze marine heatwaves. J. Open Source Softw. 4, 1124 (2019).

    ADS 

    Google Scholar
     

  • He, Q. Codes and source data for “Common occurrences of subsurface heatwaves and cold-spells in ocean eddies”. Zenodo https://doi.org/10.5281/zenodo.13235274 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments