Wednesday, February 18, 2026
No menu items!
HomeNatureCold-injection synthesis of highly emissive perovskite nanocrystals

Cold-injection synthesis of highly emissive perovskite nanocrystals

  • Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, F. et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dey, A. et al. State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15, 10775–10981 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, T. H. et al. A roadmap for the commercialization of perovskite light emitters. Nat. Rev. Mater. 7, 757–777 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Kim, J. I. et al. Strategies to extend the lifetime of perovskite downconversion films for display applications. Adv. Mater. 35, 2209784 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, X. et al. Diffusion-mediated synthesis of high-quality organic–inorganic hybrid perovskite nanocrystals. Nat. Synth. 4, 167–176 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shamsi, J., Rainò, G., Kovalenko, M. V. & Stranks, S. D. To nano or not to nano for bright halide perovskite emitters. Nat. Nanotechnol. 16, 1164–1168 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chu, Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 22% via small-molecule passivation. Adv. Mater. 33, 2007169 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Vighnesh, K., Wang, S., Liu, H. & Rogach, A. L. Hot-injection synthesis protocol for green-emitting cesium lead bromide perovskite nanocrystals. ACS Nano 16, 19618–19625 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, H., Susha, A. S., Kershaw, S. V., Hung, T. F. & Rogach, A. L. Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature. Adv. Sci. 2, 1500194 (2015).

    Article 

    Google Scholar
     

  • Li, X. et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 26, 2435–2445 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, Y. H. et al. Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano 11, 6586–6593 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahimnejad, S., Kovalenko, A., Forés, S. M., Aranda, C. & Guerrero, A. Coordination chemistry dictates the structural defects in lead halide perovskites. ChemPhysChem 17, 2795–2798 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stamplecoskie, K. G., Manser, J. S. & Kamat, P. V. Dual nature of the excited state in organic–inorganic lead halide perovskites. Energy Environ. Sci. 8, 208–215 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Yoon, S. J., Stamplecoskie, K. G. & Kamat, P. V. How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7, 1368–1373 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yan, K. et al. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. J. Am. Chem. Soc. 137, 4460–4468 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, S., Yuan, D., Xu, Y., Wang, A. & Deng, Z. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10, 3648–3657 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahmed, G. H. et al. Pyridine-induced dimensionality change in hybrid perovskite nanocrystals. Chem. Mater. 29, 4393–4400 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, Y. H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics 15, 148–155 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bodnarchuk, M. I. et al. Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Lett. 4, 63–74 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fiuza-Maneiro, N. et al. Ligand chemistry of inorganic lead halide perovskite nanocrystals. ACS Energy Lett. 8, 1152–1191 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Surface termination of CsPbBr3 perovskite quantum dots determined by solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 6117–6127 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maes, J. et al. Light absorption coefficient of CsPbBr3 perovskite nanocrystals. J. Phys. Chem. Lett. 9, 3093–3097 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Smock, S. R., Williams, T. J. & Brutchey, R. L. Quantifying the thermodynamics of ligand binding to CsPbBr3 quantum dots. Angew. Chem. Int. Ed. 57, 11711–11715 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Kazes, M., Udayabhaskararao, T., Dey, S. & Oron, D. Effect of surface ligands in perovskite nanocrystals: extending in and reaching out. Acc. Chem. Res. 54, 1409–1418 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, A. et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10, 7943–7954 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Otero-Martínez, C. et al. Colloidal metal–halide perovskite nanoplatelets: thickness-controlled synthesis, properties, and application in light-emitting diodes. Adv. Mater. 34, 2107105 (2022).

    Article 

    Google Scholar
     

  • Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pan, J. et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv. Mater. 28, 8718–8725 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, S. et al. In situ bonding regulation of surface ligands for efficient and stable FAPbI3 quantum dot solar cells. Adv. Sci. 9, 2204476 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Toso, S., Baranov, D., Filippi, U., Giannini, C. & Manna, L. Collective diffraction effects in perovskite nanocrystal superlattices. Acc. Chem. Res. 56, 66–76 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toso, S., Baranov, D., Giannini, C., Marras, S. & Manna, L. Wide-angle X-ray diffraction evidence of structural coherence in CsPbBr3 nanocrystal superlattices. ACS Mater. Lett. 1, 272–276 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y. H., Wolf, C., Kim, H. & Lee, T. W. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy 52, 329–335 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ma, K. et al. Multifunctional conjugated ligand engineering for stable and efficient perovskite solar cells. Adv. Mater. 33, 2100791 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Peng, J., Chen, Y., Zheng, K., Pullerits, T. & Liang, Z. Insights into charge carrier dynamics in organo-metal halide perovskites: From neat films to solar cells. Chem. Soc. Rev. 46, 5714–5729 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. S. et al. Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611, 688–694 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jeong, S. H. et al. Characterizing the efficiency of perovskite solar cells and light-emitting diodes. Joule 4, 1206–1235 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Relationship of giant dielectric constant and ion migration in CH3NH3PbI3 single crystal using dielectric spectroscopy. J. Phys. Chem. C 124, 13348–13355 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kim, Y.-H. et al. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17, 590–597 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    MathSciNet 

    Google Scholar
     

  • Yang, Q. et al. Surface polarization and recombination in organic–inorganic hybrid perovskite solar cells based on photo- and electrically induced negative capacitance studies. Org. Electron. 62, 203–208 (2018).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments