Thursday, June 26, 2025
No menu items!
HomeNatureCoherent bunching of anyons and dissociation in an interference experiment

Coherent bunching of anyons and dissociation in an interference experiment

  • Zhang, Y. M. et al. Distinct signatures for Coulomb blockade and Aharonov-Bohm interference in electronic Fabry-Perot interferometers. Phys. Rev. B 79, 241304 (2009).

    Article 

    Google Scholar
     

  • Ofek, N. et al. Role of interactions in an electronic Fabry–Perot interferometer operating in the quantum Hall effect regime. Proc. Natl Acad. Sci. USA 107, 5276–5281 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronen, Y. et al. Aharonov-Bohm effect in graphene-based Fabry-Pérot quantum Hall interferometers. Nat. Nanotechnol. 16, 563–569 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, J., Liang, S., Gardner, G. C. & Manfra, M. J. Direct observation of anyonic braiding statistics. Nat. Phys. 16, 931–936 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Aharonov–Bohm interference and statistical phase-jump evolution in fractional quantum Hall states in bilayer graphene. Nat. Nanotechnol. 19, 1619–1626 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, J. et al. Aharonov–Bohm interference of fractional quantum Hall edge modes. Nat. Phys. 15, 563–569 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Déprez, C. et al. A tunable Fabry-Pérot quantum Hall interferometer in graphene. Nat. Nanotechnol. 16, 555–562 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Samuelson, N. L. et al. Anyonic statistics and slow quasiparticle dynamics in a graphene fractional quantum Hall interferometer. Preprint at https://arxiv.org/abs/2403.19628 (2024).

  • Werkmeister, T. et al. Anyon braiding and telegraph noise in a graphene interferometer. Science 388, 730–735 (2024).

  • Chamon, C. D. C., Freed, D. E., Kivelson, S. A., Sondhi, S. L. & Wen, X. G. Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997).

    Article 

    Google Scholar
     

  • Willett, R. L. et al. Interference measurements of non-abelian e/4 & abelian e/2 quasiparticle braiding. Phys. Rev. 13, 011028 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Yang, W. et al. Evidence for correlated electron pairs and triplets in quantum Hall interferometers. Nat. Commun. 15, 10064 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ji, Y. et al. An electronic Mach-Zehnder interferometer. Nature 422, 415–418 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neder, I., Heiblum, M., Levinson, Y., Mahalu, D. & Umansky, V. Unexpected behavior in a two-path electron interferometer. Phys. Rev. Lett. 96, 016804 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kundu, H. K., Biswas, S., Ofek, N., Umansky, V. & Heiblum, M. Anyonic interference and braiding phase in a Mach-Zehnder interferometer. Nat. Phys. 19, 515–521 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ghosh, B. et al. Anyonic braiding in a chiral Mach–Zehnder interferometer. Nat. Phys. https://doi.org/10.1038/s41567-025-02960-3 (in the press).

  • Bhattacharyya, R., Banerjee, M., Heiblum, M., Mahalu, D. & Umansky, V. Melting of interference in the fractional quantum Hall effect: appearance of neutral modes. Phys. Rev. Lett. 122, 246801 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de-Picciotto, R. et al. Direct observation of a fractional charge. Phys. B: Condens. Matter 249–251, 395–400 (1998).

    Article 

    Google Scholar
     

  • Reznikov, M., de Picciotto, R., Griffiths, T. G., Heiblum, M. & Umansky, V. Observation of quasiparticles with one-fifth of an electron’s charge. Nature 399, 238–241 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Chung, Y. C., Heiblum, M. & Umansky, V. Scattering of bunched fractionally charged quasiparticles. Phys. Rev. Lett. 91, 216804 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schuster, R. et al. Phase measurement in a quantum dot via a double-slit interference experiment. Nature 385, 417–420 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Neder, I. et al. Interference between two indistinguishable electrons from independent sources. Nature 448, 333–337 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • dePicciotto, R. et al. Direct observation of a fractional charge. Nature 389, 162–164 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Saminadayar, L., Glattli, D. C., Jin, Y. & Etienne, B. Observation of the e/3 fractionally charged Laughlin quasiparticle. Phys. Rev. Lett. 79, 2526–2529 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Simmons, J. A. et al. Resistance fluctuations in the integral-quantum-Hall-effect and fractional-quantum-Hall-effect regimes. Phys. Rev. B 44, 12933–12944 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J.-Y. M. et al. Partitioning of diluted anyons reveals their braiding statistics. Nature 617, 277–281 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Glidic, P. et al. Cross-correlation investigation of anyon statistics in the ν = 1/3 and 2/5 fractional quantum Hall states. Phys. Rev. 13, 011030 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Ruelle, M. et al. Comparing fractional quantum Hall Laughlin and Jain topological orders with the anyon collider. Phys. Rev. 13, 011031 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bartolomei, H. et al. Fractional statistics in anyon collisions. Science 368, 173–177 (2020).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • Biswas, S. et al. Shot noise does not always provide the quasiparticle charge. Nat. Phys. 18, 1476–1481 (2022).

  • Deviatov, E. V., Egorov, S. V., Biasiol, G. & Sorba, L. Quantum Hall Mach-Zehnder interferometer at fractional filling factors. Europhys. Lett. 100, 67009 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Batra, N., Wei, Z., Vishveshwara, S. & Feldman, D. E. Anyonic Mach-Zehnder interferometer on a single edge of a two-dimensional electron gas. Phys. Rev. B 108, L241302 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Bid, A., Ofek, N., Heiblum, M., Umansky, V. & Mahalu, D. Shot noise and charge at the 2/3 composite fractional quantum Hall state. Phys. Rev. Lett. 103, 236802 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Biswas, S., Kundu, H. K., Umansky, V. & Heiblum, M. Electron pairing of interfering interface-based edge modes. Phys. Rev. Lett. 131, 096302 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, H. K. et al. Robust electron pairing in the integer quantum Hall effect regime. Nat. Commun. 6, 7435 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Frigeri, G. A., Scherer, D. D. & Rosenow, B. Sub-periods and apparent pairing in integer quantum Hall interferometers. Europhys. Lett. 126, 67007 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kim, J. et al. Aharonov-Bohm interference in even-denominator fractional quantum Hall states. Preprint at https://arxiv.org/abs/2412.19886 (2024).

  • Moore, G. & Read, N. Nonabelions in the fractional quantum Hall effect. Nucl. Phys. B 360, 362–396 (1991).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ghosh, B. Coherent bunching of anyons and their dissociation in interference experiments. Zenodo https://doi.org/10.5281/zenodo.15395283 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments