Wednesday, January 15, 2025
No menu items!
HomeNatureClouds reduce downwelling longwave radiation over land in a warming climate

Clouds reduce downwelling longwave radiation over land in a warming climate

  • Luo, H., Quaas, J. & Han, Y. Examining cloud vertical structure and radiative effects from satellite retrievals and evaluation of CMIP6 scenarios. Atmos. Chem. Phys. 23, 8169–8186 (2023).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Ramanathan, V. et al. Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment. Science 243, 57–63 (1989).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Dufresne, J.-L. & Bony, S. An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Clim. 21, 5135–5144 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Vial, J., Dufresne, J.-L. & Bony, S. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim. Dyn. 41, 3339–3362 (2013).

    Article 
    MATH 

    Google Scholar
     

  • Zelinka, M. D. et al. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 47, e2019GL085782 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Forster, P. T. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. P. et al.) Ch. 7 (Cambridge Univ. Press, 2021).

  • Sherwood, S. C. et al. An assessment of Earth’s climate sensitivity using multiple lines of evidence. Rev. Geophys. 58, e2019RG000678 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ceppi, P., Brient, F., Zelinka, M. D. & Hartmann, D. L. Cloud feedback mechanisms and their representation in global climate models. Wiley Interdiscip. Rev. Clim. Change 8, e465 (2017).

    Article 

    Google Scholar
     

  • Mace, G. G. & Berry, E. Using active remote sensing to evaluate cloud-climate feedbacks: a review and a look to the future. Curr. Clim. Change Rep. 3, 185–192 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Winker, D., Chepfer, H., Noel, V. & Cai, X. Observational constraints on cloud feedbacks: the role of active satellite sensors. Surv. Geophys. 38, 1483–1508 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L., Huang, Y., Gyakum, J. R., Turner, D. D. & Gero, P. J. Trends in downwelling longwave radiance over the Southern Great Plains. J. Geophys. Res. Atmos. 127, e2021JD035949 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Hasselmann, K. Multi-pattern fingerprint method for detection and attribution of climate change. Clim. Dyn. 13, 601–611 (1997).

    Article 
    MATH 

    Google Scholar
     

  • Leroy, S., Anderson, J., Dykema, J. & Goody, R. Testing climate models using thermal infrared spectra. J. Clim. 21, 1863–1875 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Huang, Y., Leroy, S., Gero, P. J., Dykema, J. & Anderson, J. Separation of longwave climate feedbacks from spectral observations. J. Geophys. Res. Atmos. 115, D07104 (2010).

    ADS 

    Google Scholar
     

  • Huang, Y., Leroy, S. S. & Anderson, J. G. Determining longwave forcing and feedback using infrared spectra and GNSS radio occultation. J. Clim. 23, 6027–6035 (2010).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Huang, Y. & Ramaswamy, V. Evolution and trend of the outgoing longwave radiation spectrum. J. Clim. 22, 4637–4651 (2009).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Feldman, D. R., Collins, W. D. & Paige, J. L. Pan-spectral observing system simulation experiments of shortwave reflectance and long-wave radiance for climate model evaluation. Geosci. Model Dev. 8, 1943–1954 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Brindley, H. & Bantges, R. The spectral signature of recent climate change. Curr. Clim. Change Rep. 2, 112–126 (2016).

    Article 
    MATH 

    Google Scholar
     

  • Mülmenstädt, J. et al. An underestimated negative cloud feedback from cloud lifetime changes. Nat. Clim. Change 11, 508–513 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Dong, Y. et al. Intermodel spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and CMIP6 models. J. Clim. 33, 7755–7775 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Gordon, N. D., Jonko, A. K., Forster, P. M. & Shell, K. M. An observationally based constraint on the water‐vapor feedback. J. Geophys. Res. Atmos. 118, 12,435–412,443 (2013).

    Article 

    Google Scholar
     

  • Cesana, G. V. & Del Genio, A. D. Observational constraint on cloud feedbacks suggests moderate climate sensitivity. Nat. Clim. Change 11, 213–218 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Myers, T. A. et al. Observational constraints on low cloud feedback reduce uncertainty of climate sensitivity. Nat. Clim. Change 11, 501–507 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kramer, R. J. et al. Observational evidence of increasing global radiative forcing. Geophys. Res. Lett. 48, e2020GL091585 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Stubenrauch, C. J. et al. Assessment of global cloud datasets from satellites: project and database initiated by the GEWEX radiation panel. Bull. Am. Meteorol. Soc. 94, 1031–1049 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Soden, B. J. et al. Quantifying climate feedbacks using radiative kernels. J. Clim. 21, 3504–3520 (2008).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Zelinka, M. D., Klein, S. A. & Hartmann, D. L. Computing and partitioning cloud feedbacks using cloud property histograms. Part I: cloud radiative kernels. J. Clim. 25, 3715–3735 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Norris, J. R. et al. Evidence for climate change in the satellite cloud record. Nature 536, 72–75 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Evan, A. T., Heidinger, A. K. & Vimont, D. J. Arguments against a physical long‐term trend in global ISCCP cloud amounts. Geophys. Res. Lett. 34, L04701 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Platnick, S. et al. The NASA MODIS-VIIRS continuity cloud optical properties products. Remote Sens. 13, 2 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Zhao, C. et al. Toward understanding of differences in current cloud retrievals of ARM ground‐based measurements. J. Geophys. Res. Atmos. 117, D10206 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Zhao, C., Xie, S., Chen, X., Jensen, M. P. & Dunn, M. Quantifying uncertainties of cloud microphysical property retrievals with a perturbation method. J. Geophys. Res. Atmos. 119, 5375–5385 (2014).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Lai, R. et al. Comparison of cloud properties from Himawari-8 and FengYun-4A geostationary satellite radiometers with MODIS cloud retrievals. Remote Sens. 11, 1703 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Feldman, D. R. et al. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 519, 339–343 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Feng, J., Menzel, R. & Paynter, D. A flexible approach to parameterize the optical properties of clouds and precipitation. Preprint at ESS Open Archive https://doi.org/10.22541/essoar.171804933.35767571/v1 (2024).

  • Shakespeare, C. J. & Roderick, M. L. Diagnosing instantaneous forcing and feedbacks of downwelling longwave radiation at the surface: a simple methodology and its application to CMIP5 models. J. Clim. 35, 3785–3801 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Clark, J., Clothiaux, E., Feldstein, S. & Lee, S. Drivers of global clear sky surface downwelling longwave irradiance trends from 1984 to 2017. Geophys. Res. Lett. 48, e2021GL093961 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Goosse, H. et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 9, 1919 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Huang, Y. On the longwave climate feedbacks. J. Clim. 26, 7603–7610 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Huang, H. & Huang, Y. Radiative sensitivity quantified by a new set of radiation flux kernels based on the ECMWF Reanalysis v5 (ERA5). Earth Syst. Sci. Data 15, 3001–3021 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Kato, S. et al. Surface irradiances of edition 4.0 clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) data product. J. Clim. 31, 4501–4527 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Loeb, N. G. et al. Clouds and the earth’s radiant energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. Clim. 31, 895–918 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Raghuraman, S. P., Paynter, D., Menzel, R. & Ramaswamy, V. Forcing, cloud feedbacks, cloud masking, and internal variability in the cloud radiative effect satellite record. J. Clim. 36, 4151–4167 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Loeb, N. G. et al. Satellite and ocean data reveal marked increase in Earth’s heating rate. Geophys. Res. Lett. 48, e2021GL093047 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Chao, L.-W. & Dessler, A. E. An assessment of climate feedbacks in observations and climate models using different energy balance frameworks. J. Clim. 34, 9763–9773 (2021).

    ADS 
    MATH 

    Google Scholar
     

  • Ceppi, P. & Nowack, P. Observational evidence that cloud feedback amplifies global warming. Proc. Natl Acad. Sci. USA 118, e2026290118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knuteson, R. et al. Atmospheric emitted radiance interferometer. Part II: instrument performance. J. Atmos. Ocean. Technol. 21, 1777–1789 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Jacobson, A. R. et al. CarbonTracker CT2019B (NOAA Global Monitoring Laboratory, 2020).

  • Dlugokencky, E. J., Mund, J. W., Crotwell, A. M., Crotwell, M. J. & Thoning, K. W. Atmospheric carbon dioxide dry air mole fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network 1968-2020, Version: 2021-07-30. National Oceanic and Atmospheric Administration (NOAA), Global Monitoring Laboratory (GML) https://doi.org/10.15138/wkgj-f215 (2021).

  • Peters, W. et al. An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl Acad. Sci. USA 104, 18925–18930 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dlugokencky, E. J., Crotwell, A. M., Mund, J. W., Crotwell, M. J. & Thoning, K. W. Atmospheric methane dry air mole fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1983-2020, Version: 2021-07-30. National Oceanic and Atmospheric Administration (NOAA), Global Monitoring Laboratory (GML) https://doi.org/10.15138/wkgj-f215 (2021).

  • Dutton, G., Elkins II, J., Hall, B. & NOAA ESRL. Earth System Research Laboratory Halocarbons and Other Atmospheric Trace Gases Chromatograph for Atmospheric Trace Species (CATS) Measurements, Version 1 (nitrous oxide (N2O), chlorofluorocarbons (CFC-11 and CFC-11) and carbon tetrachloride (CCl4)). NOAA National Centers for Environmental Information https://doi.org/10.7289/V5X0659V (2017).

  • Atmospheric Radiation Measurement (ARM) user facility. 2001, updated hourly. Improved MICROBASE product with Uncertainties (MICROBASEKAPLUS). 2011-01-18 to 2020-06-30, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Compiled by M. Wang, S. Giangrande, K. Johnson and M. Jensen. ARM Data Center https://doi.org/10.5439/1768890.

  • Atmospheric Radiation Measurement (ARM) user facility. 1996, updated hourly. Continuous Baseline Microphysical Retrieval (MICROBASEPI2). 1996-11-08 to 2010-12-30, Southern Great Plains (SGP) Central Facility, Lamont, OK (C1). Compiled by S. Giangrande and K. Johnson. ARM Data Center https://doi.org/10.5439/1034923.

  • Li, J. Gaussian quadrature and its application to infrared radiation. J. Atmos. Sci. 57, 753–765 (2000).

    Article 
    ADS 
    MATH 

    Google Scholar
     

  • Pawlowicz, R. M_Map: a mapping package for MATLAB, version 1.4m (2020); www.eoas.ubc.ca/~rich/map.html.

  • Liu, L., Huang, Y. & Gyakum, J. Data and codes for “Clouds attenuate the increase of downwelling longwave radiation over land in climate warming”. Zenodo https://doi.org/10.5281/zenodo.13058643 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments