Thursday, April 3, 2025
No menu items!
HomeNatureClinically relevant clot resolution via a thromboinflammation-on-a-chip

Clinically relevant clot resolution via a thromboinflammation-on-a-chip

  • Bray, M. A., Sartain, S. E., Gollamudi, J. & Rumbaut, R. E. Microvascular thrombosis: experimental and clinical implications. Transl. Res. 225, 105–130 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conran, N. & De Paula, E. V. Thromboinflammatory mechanisms in sickle cell disease—challenging the hemostatic balance. Haematologica 105, 2380–2390 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Gu, S. X. et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat. Rev. Cardiol. 18, 194–209 (2021).

    PubMed 
    MATH 

    Google Scholar
     

  • Jackson, S. P., Darbousset, R. & Schoenwaelder, S. M. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 133, 906–918 (2019).

    PubMed 
    MATH 

    Google Scholar
     

  • Needleman, L. et al. Ultrasound for lower extremity deep venous thrombosis: multidisciplinary recommendations from the Society of Radiologists in Ultrasound Consensus Conference. Circulation 137, 1505–1515 (2018).

    PubMed 
    MATH 

    Google Scholar
     

  • Canedo-Antelo, M. et al. Radiologic clues to cerebral venous thrombosis. Radiographics 39, 1611–1628 (2019).

    PubMed 
    MATH 

    Google Scholar
     

  • Schuijf, J. D. et al. CT imaging with ultra-high-resolution: opportunities for cardiovascular imaging in clinical practice. J. Cardiovasc. Comput. Tomogr. 16, 388–396 (2022).

    PubMed 
    MATH 

    Google Scholar
     

  • Choe, K. et al. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nat. Immunol. 23, 330–340 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Whyte, C. S. & Mutch, N. J. “Going with the flow” in modeling fibrinolysis. Front. Cardiovasc. Med. 9, 1054541 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bonnard, T., Law, L. S., Tennant, Z. & Hagemeyer, C. E. Development and validation of a high throughput whole blood thrombolysis plate assay. Sci. Rep. 7, 2346 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kuiper, G. J. et al. Validation of a modified thromboelastometry approach to detect changes in fibrinolytic activity. Thromb. J. 14, 1 (2016).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mutch, N. J. et al. The use of the Chandler loop to examine the interaction potential of NXY-059 on the thrombolytic properties of rtPA on human thrombi in vitro. Br. J. Pharmacol. 153, 124–131 (2008).

    PubMed 
    MATH 

    Google Scholar
     

  • Pandian, N. K. R., Mannino, R. G., Lam, W. A. & Jain, A. Thrombosis-on-a-chip: prospective impact of microphysiological models of vascular thrombosis. Curr. Opin. Biomed. Eng. 5, 29–34 (2018).

    PubMed 
    MATH 

    Google Scholar
     

  • Zhang, Y. S. et al. Bioprinted thrombosis-on-a-chip. Lab Chip 16, 4097–4105 (2016).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Qiu, Y. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng. 2, 453–463 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pober, J. S. & Sessa, W. C. Inflammation and the blood microvascular system. Cold Spring Harb. Perspect. Biol. 7, a016345 (2014).

    PubMed 

    Google Scholar
     

  • Suzuki, Y., Yasui, H., Brzoska, T., Mogami, H. & Urano, T. Surface-retained tPA is essential for effective fibrinolysis on vascular endothelial cells. Blood 118, 3182–3185 (2011).

    PubMed 

    Google Scholar
     

  • Chapin, J. C. & Hajjar, K. A. Fibrinolysis and the control of blood coagulation. Blood Rev. 29, 17–24 (2015).

    PubMed 
    MATH 

    Google Scholar
     

  • Adams, S. A., Kelly, S. L., Kirsch, R. E., Robson, S. C. & Shephard, E. G. Role of neutrophil membrane proteases in fibrin degradation. Blood Coagul. Fibrinolysis 6, 693–702 (1995).

    PubMed 

    Google Scholar
     

  • Nicklas, J. M., Gordon, A. E. & Henke, P. K. Resolution of deep venous thrombosis: proposed immune paradigms. Int. J. Mol. Sci. 21, 2080 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Varma, M. R. et al. Neutropenia impairs venous thrombosis resolution in the rat. J. Vasc. Surg. 38, 1090–1098 (2003).

    PubMed 
    MATH 

    Google Scholar
     

  • Ali, M. R. et al. Aspect of thrombolytic therapy: a review. ScientificWorldJournal 2014, 586510 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • The NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 28, 2109–2118 (1997).

  • Adams, H. P. Jr et al. Guidelines for thrombolytic therapy for acute stroke: a supplement to the guidelines for the management of patients with acute ischemic stroke. A statement for healthcare professionals from a Special Writing Group of the Stroke Council, American Heart Association. Circulation 94, 1167–1174 (1996).

    PubMed 

    Google Scholar
     

  • Richardson, P. G. et al. The importance of endothelial protection: the emerging role of defibrotide in reversing endothelial injury and its sequelae. Bone Marrow Transplant 56, 2889–2896 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Mohty, M. et al. Prophylactic, preemptive, and curative treatment for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a position statement from an international expert group. Bone Marrow Transplant 55, 485–495 (2020).

    PubMed 

    Google Scholar
     

  • Tekgunduz, E. et al. Does defibrotide prophylaxis decrease the risk of acute graft versus host disease following allogeneic hematopoietic cell transplantation? Transfus. Apher. Sci. 54, 30–34 (2016).

    PubMed 

    Google Scholar
     

  • Richardson, P. G., Carreras, E., Iacobelli, M. & Nejadnik, B. The use of defibrotide in blood and marrow transplantation. Blood Adv. 2, 1495–1509 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Buijsers, B., Yanginlar, C., Maciej-Hulme, M. L., de Mast, Q. & van der Vlag, J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. eBioMed. 59, 102969 (2020).


    Google Scholar
     

  • McLaughlin, K. et al. Low molecular weight heparin improves endothelial function in pregnant women at high risk of preeclampsia. Hypertension 69, 180–188 (2017).

    PubMed 

    Google Scholar
     

  • Shet, A. S., Lizarralde-Iragorri, M. A. & Naik, R. P. The molecular basis for the prothrombotic state in sickle cell disease. Haematologica 105, 2368–2379 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fredman, G. Resolving inflammation and pain of sickle cell. Blood 133, 190–191 (2019).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhang, D., Xu, C., Manwani, D. & Frenette, P. S. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 127, 801–809 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ataga, K. I. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376, 429–439 (2017).

    PubMed 

    Google Scholar
     

  • Welsh, J. D. et al. A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 124, 1808–1815 (2014).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Henke, P. K. et al. Interleukin-8 administration enhances venous thrombosis resolution in a rat model. J. Surg. Res. 99, 84–91 (2001).

    PubMed 
    MATH 

    Google Scholar
     

  • Sahoo, M., del Barrio, L., Miller, M. A. & Re, F. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with species. PLoS Pathog. 10, e1004327 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Szepanowski, R. D. et al. Thromboinflammatory challenges in stroke pathophysiology. Semin. Immunopathol. 45, 389–410 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Noubouossie, D. F., Reeves, B. N., Strahl, B. D. & Key, N. S. Neutrophils: back in the thrombosis spotlight. Blood 133, 2186–2197 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peiseler, M. & Kubes, P. More friend than foe: the emerging role of neutrophils in tissue repair. J. Clin. Invest. 129, 2629–2639 (2019).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Qi, H., Yang, S. & Zhang, L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Front. Immunol. 8, 928 (2017).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wang, R. et al. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 138, 91–103 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Richardson, E. et al. Defibrotide: potential for treating endothelial dysfunction related to viral and post-infectious syndromes. Expert Opin. Ther. Targets 25, 423–433 (2021).

    PubMed 
    MATH 

    Google Scholar
     

  • Li, G., Hilgenfeld, R., Whitley, R. & De Clercq, E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat. Rev. Drug Discov. 22, 449–475 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Corbacioglu, S. et al. Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: an open-label, phase 3, randomised controlled trial. Lancet 379, 1301–1309 (2012).

    PubMed 

    Google Scholar
     

  • Richardson, P. G. et al. Multi-institutional use of defibrotide in 88 patients after stem cell transplantation with severe veno-occlusive disease and multisystem organ failure: response without significant toxicity in a high-risk population and factors predictive of outcome. Blood 100, 4337–4343 (2002).

    PubMed 

    Google Scholar
     

  • Richardson, P. G. et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood 127, 1656–1665 (2016).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Frame, D. et al. Defibrotide therapy for SARS-CoV-2 ARDS. Chest 162, 346–355 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ruggeri, A. et al. Use of defibrotide in patients with COVID-19 pneumonia: comparison of a phase II study and a matched real-world corhort control. Haematologia 109, 3261–3268 (2024).

    MATH 

    Google Scholar
     

  • Morici, N. et al. Enoxaparin for thromboprophylaxis in hospitalized COVID-19 patients: the X-COVID-19 randomized trial. Eur. J. Clin. Invest. 52, e13735 (2022).

    PubMed 
    MATH 

    Google Scholar
     

  • Price, G. M. & Tien, J. Methods for forming human microvascular tubes in vitro and measuring their macromolecular permeability. Methods Mol. Biol. 671, 281–293 (2011).

    PubMed 
    MATH 

    Google Scholar
     

  • Wang, C., Lu, H. & Schwartz, M. A. A novel in vitro flow system for changing flow direction on endothelial cells. J. Biomech. 45, 1212–1218 (2012).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments