Bray, M. A., Sartain, S. E., Gollamudi, J. & Rumbaut, R. E. Microvascular thrombosis: experimental and clinical implications. Transl. Res. 225, 105–130 (2020).
Conran, N. & De Paula, E. V. Thromboinflammatory mechanisms in sickle cell disease—challenging the hemostatic balance. Haematologica 105, 2380–2390 (2020).
Gu, S. X. et al. Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat. Rev. Cardiol. 18, 194–209 (2021).
Jackson, S. P., Darbousset, R. & Schoenwaelder, S. M. Thromboinflammation: challenges of therapeutically targeting coagulation and other host defense mechanisms. Blood 133, 906–918 (2019).
Needleman, L. et al. Ultrasound for lower extremity deep venous thrombosis: multidisciplinary recommendations from the Society of Radiologists in Ultrasound Consensus Conference. Circulation 137, 1505–1515 (2018).
Canedo-Antelo, M. et al. Radiologic clues to cerebral venous thrombosis. Radiographics 39, 1611–1628 (2019).
Schuijf, J. D. et al. CT imaging with ultra-high-resolution: opportunities for cardiovascular imaging in clinical practice. J. Cardiovasc. Comput. Tomogr. 16, 388–396 (2022).
Choe, K. et al. Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nat. Immunol. 23, 330–340 (2022).
Whyte, C. S. & Mutch, N. J. “Going with the flow” in modeling fibrinolysis. Front. Cardiovasc. Med. 9, 1054541 (2022).
Bonnard, T., Law, L. S., Tennant, Z. & Hagemeyer, C. E. Development and validation of a high throughput whole blood thrombolysis plate assay. Sci. Rep. 7, 2346 (2017).
Kuiper, G. J. et al. Validation of a modified thromboelastometry approach to detect changes in fibrinolytic activity. Thromb. J. 14, 1 (2016).
Mutch, N. J. et al. The use of the Chandler loop to examine the interaction potential of NXY-059 on the thrombolytic properties of rtPA on human thrombi in vitro. Br. J. Pharmacol. 153, 124–131 (2008).
Pandian, N. K. R., Mannino, R. G., Lam, W. A. & Jain, A. Thrombosis-on-a-chip: prospective impact of microphysiological models of vascular thrombosis. Curr. Opin. Biomed. Eng. 5, 29–34 (2018).
Zhang, Y. S. et al. Bioprinted thrombosis-on-a-chip. Lab Chip 16, 4097–4105 (2016).
Qiu, Y. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng. 2, 453–463 (2018).
Pober, J. S. & Sessa, W. C. Inflammation and the blood microvascular system. Cold Spring Harb. Perspect. Biol. 7, a016345 (2014).
Suzuki, Y., Yasui, H., Brzoska, T., Mogami, H. & Urano, T. Surface-retained tPA is essential for effective fibrinolysis on vascular endothelial cells. Blood 118, 3182–3185 (2011).
Chapin, J. C. & Hajjar, K. A. Fibrinolysis and the control of blood coagulation. Blood Rev. 29, 17–24 (2015).
Adams, S. A., Kelly, S. L., Kirsch, R. E., Robson, S. C. & Shephard, E. G. Role of neutrophil membrane proteases in fibrin degradation. Blood Coagul. Fibrinolysis 6, 693–702 (1995).
Nicklas, J. M., Gordon, A. E. & Henke, P. K. Resolution of deep venous thrombosis: proposed immune paradigms. Int. J. Mol. Sci. 21, 2080 (2020).
Varma, M. R. et al. Neutropenia impairs venous thrombosis resolution in the rat. J. Vasc. Surg. 38, 1090–1098 (2003).
Ali, M. R. et al. Aspect of thrombolytic therapy: a review. ScientificWorldJournal 2014, 586510 (2014).
The NINDS t-PA Stroke Study Group. Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke. Stroke 28, 2109–2118 (1997).
Adams, H. P. Jr et al. Guidelines for thrombolytic therapy for acute stroke: a supplement to the guidelines for the management of patients with acute ischemic stroke. A statement for healthcare professionals from a Special Writing Group of the Stroke Council, American Heart Association. Circulation 94, 1167–1174 (1996).
Richardson, P. G. et al. The importance of endothelial protection: the emerging role of defibrotide in reversing endothelial injury and its sequelae. Bone Marrow Transplant 56, 2889–2896 (2021).
Mohty, M. et al. Prophylactic, preemptive, and curative treatment for sinusoidal obstruction syndrome/veno-occlusive disease in adult patients: a position statement from an international expert group. Bone Marrow Transplant 55, 485–495 (2020).
Tekgunduz, E. et al. Does defibrotide prophylaxis decrease the risk of acute graft versus host disease following allogeneic hematopoietic cell transplantation? Transfus. Apher. Sci. 54, 30–34 (2016).
Richardson, P. G., Carreras, E., Iacobelli, M. & Nejadnik, B. The use of defibrotide in blood and marrow transplantation. Blood Adv. 2, 1495–1509 (2018).
Buijsers, B., Yanginlar, C., Maciej-Hulme, M. L., de Mast, Q. & van der Vlag, J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. eBioMed. 59, 102969 (2020).
McLaughlin, K. et al. Low molecular weight heparin improves endothelial function in pregnant women at high risk of preeclampsia. Hypertension 69, 180–188 (2017).
Shet, A. S., Lizarralde-Iragorri, M. A. & Naik, R. P. The molecular basis for the prothrombotic state in sickle cell disease. Haematologica 105, 2368–2379 (2020).
Fredman, G. Resolving inflammation and pain of sickle cell. Blood 133, 190–191 (2019).
Zhang, D., Xu, C., Manwani, D. & Frenette, P. S. Neutrophils, platelets, and inflammatory pathways at the nexus of sickle cell disease pathophysiology. Blood 127, 801–809 (2016).
Ataga, K. I. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376, 429–439 (2017).
Welsh, J. D. et al. A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 124, 1808–1815 (2014).
Henke, P. K. et al. Interleukin-8 administration enhances venous thrombosis resolution in a rat model. J. Surg. Res. 99, 84–91 (2001).
Sahoo, M., del Barrio, L., Miller, M. A. & Re, F. Neutrophil elastase causes tissue damage that decreases host tolerance to lung infection with species. PLoS Pathog. 10, e1004327 (2014).
Szepanowski, R. D. et al. Thromboinflammatory challenges in stroke pathophysiology. Semin. Immunopathol. 45, 389–410 (2023).
Noubouossie, D. F., Reeves, B. N., Strahl, B. D. & Key, N. S. Neutrophils: back in the thrombosis spotlight. Blood 133, 2186–2197 (2019).
Peiseler, M. & Kubes, P. More friend than foe: the emerging role of neutrophils in tissue repair. J. Clin. Invest. 129, 2629–2639 (2019).
Qi, H., Yang, S. & Zhang, L. Neutrophil extracellular traps and endothelial dysfunction in atherosclerosis and thrombosis. Front. Immunol. 8, 928 (2017).
Wang, R. et al. Neutrophil extracellular traps promote tPA-induced brain hemorrhage via cGAS in mice with stroke. Blood 138, 91–103 (2021).
Richardson, E. et al. Defibrotide: potential for treating endothelial dysfunction related to viral and post-infectious syndromes. Expert Opin. Ther. Targets 25, 423–433 (2021).
Li, G., Hilgenfeld, R., Whitley, R. & De Clercq, E. Therapeutic strategies for COVID-19: progress and lessons learned. Nat. Rev. Drug Discov. 22, 449–475 (2023).
Corbacioglu, S. et al. Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: an open-label, phase 3, randomised controlled trial. Lancet 379, 1301–1309 (2012).
Richardson, P. G. et al. Multi-institutional use of defibrotide in 88 patients after stem cell transplantation with severe veno-occlusive disease and multisystem organ failure: response without significant toxicity in a high-risk population and factors predictive of outcome. Blood 100, 4337–4343 (2002).
Richardson, P. G. et al. Phase 3 trial of defibrotide for the treatment of severe veno-occlusive disease and multi-organ failure. Blood 127, 1656–1665 (2016).
Frame, D. et al. Defibrotide therapy for SARS-CoV-2 ARDS. Chest 162, 346–355 (2022).
Ruggeri, A. et al. Use of defibrotide in patients with COVID-19 pneumonia: comparison of a phase II study and a matched real-world corhort control. Haematologia 109, 3261–3268 (2024).
Morici, N. et al. Enoxaparin for thromboprophylaxis in hospitalized COVID-19 patients: the X-COVID-19 randomized trial. Eur. J. Clin. Invest. 52, e13735 (2022).
Price, G. M. & Tien, J. Methods for forming human microvascular tubes in vitro and measuring their macromolecular permeability. Methods Mol. Biol. 671, 281–293 (2011).
Wang, C., Lu, H. & Schwartz, M. A. A novel in vitro flow system for changing flow direction on endothelial cells. J. Biomech. 45, 1212–1218 (2012).