Friday, January 9, 2026
No menu items!
HomeNatureClimate change shifts the North Pacific storm track polewards

Climate change shifts the North Pacific storm track polewards

  • Salathe, E. P. Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys. Res. Lett. 33, L19820 (2006).

    Article 
    ADS 

    Google Scholar
     

  • Wise, E. K. & Dannenberg, M. P. Reconstructed storm tracks reveal three centuries of changing moisture delivery to North America. Sci. Adv. 3, e1602263 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, E. K. M., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. 117, D23118 (2012).

    ADS 

    Google Scholar
     

  • Lehmann, J., Coumou, D., Frieler, K., Eliseev, A. V. & Levermann, A. Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett. 9, 084002 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Tamarin-Brodsky, T. & Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 10, 908–913 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Harvey, B. J., Cook, P., Shaffrey, L. C. & Schiemann, R. The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. 125, e32701 (2020).

    Article 

    Google Scholar
     

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  • Graham, N. E. & Diaz, H. F. Evidence for intensification of North Pacific winter cyclones since 1948. Bull. Am. Meteor. Soc. 82, 1869–1893 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Tilinina, N., Gulev, S. K., Rudeva, I. & Koltermann, P. Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J. Clim. 26, 6419–6438 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Chang, E. K. M. & Yau, A. M. W. Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets. Clim. Dyn. 47, 1435–1454 (2016).

    Article 

    Google Scholar
     

  • Wang, J., Kim, H. & Chang, E. K. M. Changes in Northern Hemisphere winter storm tracks under the background of Arctic amplification. J. Clim. 30, 3705–3724 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Battalio, J. M. & Lora, J. M. Increases in the local eddy energetics of the extratropical atmosphere over the last four decades. J. Clim. 37, 3283–3304 (2024).

  • Hartmann, D. L. Global Physical Climatology 2nd edn (Academic Press, 2016).

  • Hazeleger, W., Seager, R., Visbeck, M., Naik, N. & Rodgers, K. Impact of the midlatitude storm track on the upper Pacific Ocean. J. Phys. Oceanogr. 31, 616–636 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5, 17491 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, E. K. M., Ma, C., Zheng, C. & Yau, A. M. W. Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett. 43, 2200–2208 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Dannenberg, M. P. & Wise, E. K. Shifting Pacific storm tracks as stressors to ecosystems of western North America. Glob. Change Biol. 23, 4896–4906 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Chemke, R. & Polvani, L. M. Opposite tropical circulation trends in climate models and in reanalyses. Nat. Geosci. 12, 528–532 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Grise, K. M. & Davis, S. M. Hadley cell expansion in CMIP6 models. Atmos. Chem. Phys. 20, 5249–5268 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chemke, R. & Yuval, J. Human-induced weakening of the Northern Hemisphere tropical circulation. Nature 617, 529–532 (2023).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Blackport, R. & Fyfe, J. C. Climate models fail to capture strengthening wintertime North Atlantic jet and impacts on Europe. Sci. Adv. 8, eabn3112 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chemke, R. & Coumou, D. Human influence on the recent weakening of storm tracks in boreal summer. npj Clim. Atmos. Sci. 7, 86 (2024).

    Article 

    Google Scholar
     

  • Held, I. M. & GFD/2000 Fellows. The General Circulation of the Atmosphere (Woods Hole Oceanographic Institute, 2000).

  • Vallis, G. K. Atmospheric and Oceanic Fluid Dynamics (Cambridge Univ. Press, 2006).

  • Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cox, P. M., Huntingford, C. & Williamson, M. S. Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature 553, 319–322 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Tselioudis, G., Rossow, W. B., Bender, F., Oreopoulos, L. & Remillard, J. Oceanic cloud trends during the satellite era and their radiative signatures. Clim. Dyn. 62, 9319–9332 (2024).

    Article 

    Google Scholar
     

  • Tamarin-Brodsky, T., Hodges, K., Hoskins, B. J. & Shepherd, T. G. A dynamical perspective on atmospheric temperature variability and its response to climate change. J. Clim. 32, 1707–1724 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Chemke, R. Persistent austral winter storm track weakening beyond doubling of CO2 concentrations. Nat. Commun. 16, 1935 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Watanabe, M. et al. Possible shift in controls of the tropical Pacific surface warming pattern. Nature 630, 315–324 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ossó, A. et al. Advancing our understanding of eddy-driven jet stream responses to climate change—a roadmap. Curr. Clim. Change Rep. 11, 2 (2024).

    Article 

    Google Scholar
     

  • Tamarin, T. & Kaspi, Y. The poleward shift of storm tracks under global warming: a Lagrangian perspective. Geophys. Res. Lett. 44, 10666–10674 (2017).

    Article 

    Google Scholar
     

  • Voigt, A. & Shaw, T. A. Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci. 8, 102–106 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Po-Chedley, S. & Fu, Q. Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites. Environ. Res. Lett. 7, 044018 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Woollings, T., Drouard, M., O’Reilly, C. H., Sexton, D. M. H. & McSweeney, C. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Commun. Earth Environ. 4, 125 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Patterson, M. & O’Reilly, C. H. Climate models struggle to simulate observed North Pacific jet trends, even accounting for tropical Pacific sea surface temperature trends. Geophys. Res. Lett. 52, e2024GL113561 (2025).

    Article 

    Google Scholar
     

  • Chemke, R., Zanna, L., Orbe, C., Sentman, L. T. & Polvani, L. M. The future intensification of the North Atlantic winter storm track: the key role of dynamic ocean coupling. J. Clim. 35, 2407–2421 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chemke, R. The future poleward shift of Southern Hemisphere summer mid-latitude storm tracks stems from ocean coupling. Nat. Commun. 13, 1730 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connelly, D. S. & Gerber, E. P. Regression forest approaches to gravity wave parameterization for climate projection. J. Adv. Mod. Earth Syst. 16, e2023MS004184 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Priestley, M. D. K. et al. An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Clim. 33, 6315–6343 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kosaka, Y. et al. The JRA-3Q reanalysis. J. Meteor. Soc. Jpn 102, 49–109 (2024).

    Article 

    Google Scholar
     

  • Kanamitsu, M. et al. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteor. Soc. 83, 1631–1643 (2002).

    Article 
    ADS 

    Google Scholar
     

  • Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Saha, S. et al. The NCEP Climate Forecast System Version 2. J. Clim. 27, 2185–2208 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Freeman, E. et al. ICOADS Release 3.0: a major update to the historical marine climate record. Int. J. Climatol. 37, 2211–2232 (2017).

    Article 

    Google Scholar
     

  • Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348, 324–327 (2015).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Chemke, R. & Ming, Y. Large atmospheric waves will get stronger, while small waves will get weaker by the end of the 21st century. Geophys. Res. Lett. 47, e2020GL090441 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Chemke, R., Ming, Y. & Yuval, J. The intensification of winter mid-latitude storm tracks in the Southern Hemisphere. Nat. Clim. Change 12, 553–557 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Chemke, R. Centennial-scale recovery of the North Atlantic summer storm track weakening. Geophys. Res. Lett. 51, e2024GL109801 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Held, I. M. & Suarez, M. J. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteor. Soc. 75, 1825–1830 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Lorenz, E. N. Available potential energy and the maintenance of the general circulation. Tellus 7, 157–167 (1955).

    Article 
    ADS 

    Google Scholar
     

  • Thompson, D. W. J. & Li, Y. Baroclinic and barotropic annular variability in the Northern Hemisphere. J. Atmos. Sci. 72, 1117–1136 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Boljka, L., Shepherd, T. G. & Blackburn, M. On the coupling between barotropic and baroclinic modes of extratropical atmospheric variability. J. Atmos. Sci. 75, 1853–1871 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Simpson, I. R. et al. Emergent constraints on the large-scale atmospheric circulation and regional hydroclimate: do they still work in CMIP6 and how much can they actually constrain the future? J. Clim. 34, 6355–6377 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Chemke, R. & Yuval, J. Atmospheric circulation to constrain subtropical precipitation projections. Nat. Clim. Change 15, 287–292 (2025).

    Article 
    ADS 

    Google Scholar
     

  • Chemke, R. Meridional gradient. Zenodo https://doi.org/10.5281/zenodo.17476128 (2025).

  • RELATED ARTICLES

    Most Popular

    Recent Comments