Salathe, E. P. Influences of a shift in North Pacific storm tracks on western North American precipitation under global warming. Geophys. Res. Lett. 33, L19820 (2006).
Wise, E. K. & Dannenberg, M. P. Reconstructed storm tracks reveal three centuries of changing moisture delivery to North America. Sci. Adv. 3, e1602263 (2017).
Chang, E. K. M., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. 117, D23118 (2012).
Lehmann, J., Coumou, D., Frieler, K., Eliseev, A. V. & Levermann, A. Future changes in extratropical storm tracks and baroclinicity under climate change. Environ. Res. Lett. 9, 084002 (2014).
Tamarin-Brodsky, T. & Kaspi, Y. Enhanced poleward propagation of storms under climate change. Nat. Geosci. 10, 908–913 (2017).
Harvey, B. J., Cook, P., Shaffrey, L. C. & Schiemann, R. The response of the Northern Hemisphere storm tracks and jet streams to climate change in the CMIP3, CMIP5, and CMIP6 climate models. J. Geophys. Res. 125, e32701 (2020).
IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
Graham, N. E. & Diaz, H. F. Evidence for intensification of North Pacific winter cyclones since 1948. Bull. Am. Meteor. Soc. 82, 1869–1893 (2001).
Tilinina, N., Gulev, S. K., Rudeva, I. & Koltermann, P. Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J. Clim. 26, 6419–6438 (2013).
Chang, E. K. M. & Yau, A. M. W. Northern Hemisphere winter storm track trends since 1959 derived from multiple reanalysis datasets. Clim. Dyn. 47, 1435–1454 (2016).
Wang, J., Kim, H. & Chang, E. K. M. Changes in Northern Hemisphere winter storm tracks under the background of Arctic amplification. J. Clim. 30, 3705–3724 (2017).
Battalio, J. M. & Lora, J. M. Increases in the local eddy energetics of the extratropical atmosphere over the last four decades. J. Clim. 37, 3283–3304 (2024).
Hartmann, D. L. Global Physical Climatology 2nd edn (Academic Press, 2016).
Hazeleger, W., Seager, R., Visbeck, M., Naik, N. & Rodgers, K. Impact of the midlatitude storm track on the upper Pacific Ocean. J. Phys. Oceanogr. 31, 616–636 (2001).
Lehmann, J. & Coumou, D. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Sci. Rep. 5, 17491 (2015).
Chang, E. K. M., Ma, C., Zheng, C. & Yau, A. M. W. Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys. Res. Lett. 43, 2200–2208 (2016).
Dannenberg, M. P. & Wise, E. K. Shifting Pacific storm tracks as stressors to ecosystems of western North America. Glob. Change Biol. 23, 4896–4906 (2017).
Chemke, R. & Polvani, L. M. Opposite tropical circulation trends in climate models and in reanalyses. Nat. Geosci. 12, 528–532 (2019).
Grise, K. M. & Davis, S. M. Hadley cell expansion in CMIP6 models. Atmos. Chem. Phys. 20, 5249–5268 (2020).
Chemke, R. & Yuval, J. Human-induced weakening of the Northern Hemisphere tropical circulation. Nature 617, 529–532 (2023).
Blackport, R. & Fyfe, J. C. Climate models fail to capture strengthening wintertime North Atlantic jet and impacts on Europe. Sci. Adv. 8, eabn3112 (2022).
Chemke, R. & Coumou, D. Human influence on the recent weakening of storm tracks in boreal summer. npj Clim. Atmos. Sci. 7, 86 (2024).
Held, I. M. & GFD/2000 Fellows. The General Circulation of the Atmosphere (Woods Hole Oceanographic Institute, 2000).
Vallis, G. K. Atmospheric and Oceanic Fluid Dynamics (Cambridge Univ. Press, 2006).
Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).
Cox, P. M., Huntingford, C. & Williamson, M. S. Emergent constraint on equilibrium climate sensitivity from global temperature variability. Nature 553, 319–322 (2018).
Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).
Tselioudis, G., Rossow, W. B., Bender, F., Oreopoulos, L. & Remillard, J. Oceanic cloud trends during the satellite era and their radiative signatures. Clim. Dyn. 62, 9319–9332 (2024).
Tamarin-Brodsky, T., Hodges, K., Hoskins, B. J. & Shepherd, T. G. A dynamical perspective on atmospheric temperature variability and its response to climate change. J. Clim. 32, 1707–1724 (2019).
Chemke, R. Persistent austral winter storm track weakening beyond doubling of CO2 concentrations. Nat. Commun. 16, 1935 (2025).
Seager, R., Henderson, N. & Cane, M. Persistent discrepancies between observed and modeled trends in the tropical Pacific Ocean. J. Clim. 35, 4571–4584 (2022).
Watanabe, M. et al. Possible shift in controls of the tropical Pacific surface warming pattern. Nature 630, 315–324 (2024).
Ossó, A. et al. Advancing our understanding of eddy-driven jet stream responses to climate change—a roadmap. Curr. Clim. Change Rep. 11, 2 (2024).
Tamarin, T. & Kaspi, Y. The poleward shift of storm tracks under global warming: a Lagrangian perspective. Geophys. Res. Lett. 44, 10666–10674 (2017).
Voigt, A. & Shaw, T. A. Circulation response to warming shaped by radiative changes of clouds and water vapour. Nat. Geosci. 8, 102–106 (2015).
Po-Chedley, S. & Fu, Q. Discrepancies in tropical upper tropospheric warming between atmospheric circulation models and satellites. Environ. Res. Lett. 7, 044018 (2012).
Woollings, T., Drouard, M., O’Reilly, C. H., Sexton, D. M. H. & McSweeney, C. Trends in the atmospheric jet streams are emerging in observations and could be linked to tropical warming. Commun. Earth Environ. 4, 125 (2023).
Patterson, M. & O’Reilly, C. H. Climate models struggle to simulate observed North Pacific jet trends, even accounting for tropical Pacific sea surface temperature trends. Geophys. Res. Lett. 52, e2024GL113561 (2025).
Chemke, R., Zanna, L., Orbe, C., Sentman, L. T. & Polvani, L. M. The future intensification of the North Atlantic winter storm track: the key role of dynamic ocean coupling. J. Clim. 35, 2407–2421 (2022).
Chemke, R. The future poleward shift of Southern Hemisphere summer mid-latitude storm tracks stems from ocean coupling. Nat. Commun. 13, 1730 (2022).
Connelly, D. S. & Gerber, E. P. Regression forest approaches to gravity wave parameterization for climate projection. J. Adv. Mod. Earth Syst. 16, e2023MS004184 (2024).
Priestley, M. D. K. et al. An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Clim. 33, 6315–6343 (2020).
Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498 (2012).
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).
Kosaka, Y. et al. The JRA-3Q reanalysis. J. Meteor. Soc. Jpn 102, 49–109 (2024).
Kanamitsu, M. et al. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteor. Soc. 83, 1631–1643 (2002).
Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).
Saha, S. et al. The NCEP Climate Forecast System Version 2. J. Clim. 27, 2185–2208 (2014).
Freeman, E. et al. ICOADS Release 3.0: a major update to the historical marine climate record. Int. J. Climatol. 37, 2211–2232 (2017).
Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348, 324–327 (2015).
Chemke, R. & Ming, Y. Large atmospheric waves will get stronger, while small waves will get weaker by the end of the 21st century. Geophys. Res. Lett. 47, e2020GL090441 (2020).
Chemke, R., Ming, Y. & Yuval, J. The intensification of winter mid-latitude storm tracks in the Southern Hemisphere. Nat. Clim. Change 12, 553–557 (2022).
Chemke, R. Centennial-scale recovery of the North Atlantic summer storm track weakening. Geophys. Res. Lett. 51, e2024GL109801 (2024).
Held, I. M. & Suarez, M. J. A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Am. Meteor. Soc. 75, 1825–1830 (1994).
Lorenz, E. N. Available potential energy and the maintenance of the general circulation. Tellus 7, 157–167 (1955).
Thompson, D. W. J. & Li, Y. Baroclinic and barotropic annular variability in the Northern Hemisphere. J. Atmos. Sci. 72, 1117–1136 (2015).
Boljka, L., Shepherd, T. G. & Blackburn, M. On the coupling between barotropic and baroclinic modes of extratropical atmospheric variability. J. Atmos. Sci. 75, 1853–1871 (2018).
Simpson, I. R. et al. Emergent constraints on the large-scale atmospheric circulation and regional hydroclimate: do they still work in CMIP6 and how much can they actually constrain the future? J. Clim. 34, 6355–6377 (2021).
Chemke, R. & Yuval, J. Atmospheric circulation to constrain subtropical precipitation projections. Nat. Clim. Change 15, 287–292 (2025).
Chemke, R. Meridional gradient. Zenodo https://doi.org/10.5281/zenodo.17476128 (2025).

