Friday, January 10, 2025
No menu items!
HomeNatureCarbon emissions from the 2023 Canadian wildfires

Carbon emissions from the 2023 Canadian wildfires

  • Jain, P. et al. Canada under fire—drivers and impacts of the record-breaking 2023 wildfire season. ESS Open Archive https://doi.org/10.22541/essoar.170914412.27504349/v1 (2024).

  • Friedlingstein, P. et al. Global carbon budget 2022. Earth Syst. Sci. Data 14, 4811–4900 (2022).

    Article 
    ADS 

    Google Scholar
     

  • MERRA-2 tavg1 2d slv Nx: 2d,1-Hourly, Time-Averaged, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4 (GSFC DAAC, accessed 24 October 2023); https://doi.org/10.5067/VJAFPLI1CSIV.

  • Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Projected changes in fire size from daily spread potential in Canada over the 21st century. Environ. Res. Lett. 15, 104048 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kitzberger, T., Falk, D. A., Westerling, A. L. & Swetnam, T. W. Direct and indirect climate controls predict heterogeneous early-mid 21st century wildfire burned area across western and boreal North America. PLoS ONE 12, 0188486 (2017).

    Article 

    Google Scholar
     

  • Nitschke, C. R. & Innes, J. L. Climatic change and fire potential in south-central British Columbia, Canada. Glob. Change Biol. 14, 841–855 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Phillips, C. A. et al. Escalating carbon emissions from North American boreal forest wildfires and the climate mitigation potential of fire management. Sci. Adv. 8, 7161 (2022).

    Article 

    Google Scholar
     

  • The State of Canada’s Forests Annual Report 2022 (Government of Canada, 2022); https://natural-resources.canada.ca/our-natural-resources/forests/state-canadas-forests-report/16496.

  • Global Forest Resources Assessment 2020: Main Report (FAO, 2020); https://doi.org/10.4060/ca9825en.

  • Byrne, B. et al. National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake. Earth Syst. Sci. Data 15, 963–1004 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Deng, Z. et al. Comparing national greenhouse gas budgets reported in UNFCCC inventories against atmospheric inversions. Earth Syst. Sci. Data 14, 1639–1675 (2022).

    Article 
    ADS 

    Google Scholar
     

  • Wang, J. A., Baccini, A., Farina, M., Randerson, J. T. & Friedl, M. A. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nat. Clim. Change 11, 435–441 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • O’Neill, N. & Otis, D. Military deploys 350 soldiers to Northwest Territories, 68 per cent of population evacuated. CTV News (22 August 2023).

  • Werf, G. R. et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Kaiser, J. W. et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9, 527–554 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pan, X. et al. Six global biomass burning emission datasets: intercomparison and application in one global aerosol model. Atmos. Chem. Phys. 20, 969–994 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Darmenov, A. S. & Silva, A. M. The Quick Fire Emissions Dataset (QFED): Documentation of Versions 2.1, 2.2 and 2.4 (NASA Global Modeling and Assimilation Office, accessed 10 November 2023); https://gmao.gsfc.nasa.gov/pubs/docs/Darmenov796.pdf.

  • Voulgarakis, A. et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 13, 2563–2587 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Varner, J. M., Kane, J. M., Kreye, J. K. & Engber, E. The flammability of forest and woodland litter: a synthesis. Curr. For. Rep. 1, 91–99 (2015).

    Article 

    Google Scholar
     

  • Veraverbeke, S. et al. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Change 7, 529–534 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 7, 892–910 (2019).

    Article 
    ADS 

    Google Scholar
     

  • Clarke, H. et al. Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nat. Commun. 13, 7161 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juang, C. S. et al. Rapid growth of large forest fires drives the exponential response of annual forestfire area to aridity in the western United States. Geophys. Res. Lett. 49, e2021GL097131 (2022).

  • Fire Statistics (Canadian Interagency Forest Fire Centre, accessed 3 November 2023); https://ciffc.net/statistics.

  • Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Parisien, M.-A. et al. Abrupt, climate-induced increase in wildfires in British Columbia since the mid-2000s. Commun. Earth Environ. 4, 309 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Haughian, S. R., Burton, P. J., Taylor, S. W. & Curry, C. Expected effects of climate change on forest disturbance regimes in British Columbia. J. Ecosyst. Manag. https://doi.org/10.22230/jem.2012v13n1a152 (2012).

  • Zheng, B. et al. Record-high CO2 emissions from boreal fires in 2021. Science 379, 912–917 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Scholten, R. C., Coumou, D., Luo, F. & Veraverbeke, S. Early snowmelt and polar jet dynamics co-influence recent extreme Siberian fire seasons. Science 378, 1005–1009 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IGES, 2006).

  • National Inventory Report: Greenhouse Gas Sources and Sinks in Canada (Environment Canada, 2023); https://publications.gc.ca/site/eng/9.506002/publication.html.

  • Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7, 9829 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Larsen, C. & MacDonald, G. An 840-year record of fire and vegetation in a boreal white spruce forest. Ecology 79, 106–118 (1998).

    Article 

    Google Scholar
     

  • Stocks, B. et al. Large forest fires in Canada, 1959–1997. J. Geophys. Res. Atmos. 107, 5 (2002).

    Article 

    Google Scholar
     

  • Johnstone, J. F. et al. Fire, climate change, and forest resilience in interior Alaska. Can. J. For. Res. 40, 1302–1312 (2010).

    Article 

    Google Scholar
     

  • Whitman, E., Parisien, M.-A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire and drought overwhelm boreal forest resilience. Sci. Rep. 9, 18796 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. A. et al. Extensive land cover change across arctic–boreal northwestern North America from disturbance and climate forcing. Glob. Change Biol. 26, 807–822 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C. & Neilson, E. T. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl Acad. Sci. USA 105, 1551–1555 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tymstra, C., Stocks, B. J., Cai, X. & Flannigan, M. D. Wildfire management in Canada: review, challenges and opportunities. Prog. Disaster Sci. 5, 100045 (2020).

    Article 

    Google Scholar
     

  • Xie, P. et al. A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeorol. 8, 607–626 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Chen, M. et al. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD009132 (2008).

  • Buck, A. Buck Research CR-1A User’s Manual (Appendix 1) (Buck Research Instruments, 1996).

  • Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the community emissions data system. Geosci. Model Dev. 11, 369–408 (2018).

  • Smith, S. J., Ahsan, H. & Mott, A. CEDS v 2021 04 21 gridded emissions data. PNNL Datahub https://doi.org/10.25584/PNNLDataHub/1779095 (2021).

  • Giglio, L., Randerson, J. T. & Van Der Werf, G. R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 118, 317–328 (2013).

    Article 

    Google Scholar
     

  • Randerson, J. T., Chen, Y., Van Der Werf, G., Rogers, B. & Morton, D. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2012JG002128 (2012).

  • Mu, M. et al. Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. J. Geophys. Res. Atmos. https://doi.org/10.1029/2011JD016245 (2011).

  • Miyazaki, K., Bowman, K. W., Yumimoto, K., Walker, T. & Sudo, K. Evaluation of a multi-model, multi-constituent assimilation framework for tropospheric chemical reanalysis. Atmos. Chem. Phys. 20, 931–967 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Miyazaki, K. et al. Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005–2018. Earth Syst. Sci. Data 12, 2223–2259 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Guenther, A. B. et al. The model of emissions of gases and aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M. & Chin, M. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: implications for policy. J. Geophys. Res. Atmos. https://doi.org/10.1029/2003JD004473 (2004).

  • Wecht, K. J., Jacob, D. J., Frankenberg, C., Jiang, Z. & Blake, D. R. Mapping of North American methane emissions with high spatial resolution by inversion of SCIAMACHY satellite data. J. Geophys. Res. Atmos. 119, 7741–7756 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Veefkind, J. et al. TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 120, 70–83 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Landgraf, J. et al. Carbon monoxide total column retrievals from TROPOMI shortwave infrared measurements. Atmos. Meas. Tech. 9, 4955–4975 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Borsdorff, T. et al. Improving the TROPOMI CO data product: update of the spectroscopic database and destriping of single orbits. Atmos. Meas. Tech. 12, 5443–5455 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Copernicus Sentinel-5P (Processed by ESA): TROPOMI Level 2 Carbon Monoxide Total Column Products. Version 02 (European Space Agency, 2021); https://doi.org/10.5270/S5P-bj3nry0.

  • Heald, C. L. et al. Comparative inverse analysis of satellite (MOPITT) and aircraft (TRACE-P) observations to estimate Asian sources of carbon monoxide. J. Geophys. Res. Atmos. https://doi.org/10.1029/2004JD005185 (2004).

  • Deeter, M. et al. The MOPITT version 9 CO product: sampling enhancements and validation. Atmos. Meas. Tech. 15, 2325–2344 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wunch, D. et al. The total carbon column observing network. Phil. Trans. R. Soc. A 369, 2087–2112 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Laughner, J. L. et al. The total carbon column observing network’s GGG2020 data version. Earth Syst. Sci. Data 16, 2197–2260 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Wennberg, P. O. et al. TCCON Data From Park Falls (US), Release GGG2020.R1 (CaltechDATA, 2022); https://doi.org/10.14291/tccon.ggg2020.parkfalls01.R1.

  • Wunch, D. et al. TCCON Data From East Trout Lake, SK (CA), Release GGG2020.R0 (CaltechDATA, 2022).

  • Henze, D. K., Hakami, A. & Seinfeld, J. H. Development of the adjoint of GEOS-CHEM. Atmos. Chem. Phys. 7, 2413–2433 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Carbon monitoring system flux estimation and attribution: impact of ACOS GOSAT XCO2 sampling on the inference of terrestrial biospheric sources and sinks. Tellus B Chem. Phys. Meteorol. 66, 22486 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Liu, J. et al. Carbon monitoring system flux net biosphere exchange 2020. Earth Syst. Sci. Data 13, 299–330 (2021).

  • Byrne, B. et al. The carbon cycle of southeast Australia during 2019–2020: drought, fires, and subsequent recovery. AGU Adv. 2, e2021AV000469 (2021).

  • Chevallier, F., BrÅLeon, F.-M. & Rayner, P. J. Contribution of the orbiting carbon observatory to the estimation of CO2 sources and sinks: theoretical study in a variational data assimilation framework. J. Geophys. Res. Atmos. https://doi.org/10.1029/2006JD007375 (2007).

  • Stanley, M., Kuusela, M., Byrne, B. & Liu, J. Technical note: posterior uncertainty estimation via a monte carlo procedure specialized for data assimilation. EGUsphere 2024, 1–20 (2024).


    Google Scholar
     

  • Friedl, M. & Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V061 [Data set]. (NASA EOSDIS Land Processes Distributed Active Archive Center, accessed 11 November 2023); https://doi.org/10.5067/MODIS/MCD12C1.061.

  • Inventory and Land-use Change (Natural Resources Canada, accessed 2 April 2024; https://natural-resources.canada.ca/climate-change-adapting-impacts-and-reducing-emissions/climate-change-impacts-forests/carbon-accounting/inventory-and-land-use-change/13111.

  • Byrne, B. bkabyrne/2023CanadaFires: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.12709398 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments