Sun, H. et al. Signatures of superconductivity near 80 K in a nickelate under high pressure. Nature 621, 493â498 (2023).
Hou, J. et al. Emergence of high-temperature superconducting phase in pressurized La3Ni2O7 crystals. Chin. Phys. Lett. 40, 117302 (2023).
Zhang, Y. et al. High-temperature superconductivity with zero resistance and strange-metal behaviour in La3Ni2O7âδ. Nat. Phys. 20, 1269â1273 (2024).
Wang, G. et al. Pressure-induced superconductivity in polycrystalline La3Ni2O7âδ. Phys. Rev. X. 14, 011040 (2024).
Zhou, Y. et al. Investigations of key issues on the reproducibility of high-Tc superconductivity emerging from compressed La3Ni2O7âδ. Preprint at arxiv.org/abs/2311.12361 (2023).
Puphal, P. et al. Unconventional crystal structure of the high-pressure superconductor La3Ni2O7. Phys. Rev. Lett. (in the press).
Abadi, S. N. et al. Electronic structure of the alternating monolayer-trilayer phase of La3Ni2O7. Preprint at arxiv.org/abs/2402.07143 (2024).
Chen, X. et al. Polymorphism in the RuddlesdenâPopper nickelate La3Ni2O7: discovery of a hidden phase with distinctive layer stacking. J. Am. Chem. Soc. 146, 3640â3645 (2024).
Wang, H., Chen, L., Rutherford, A., Zhou, H. & Xie, W. Long-range structural order in a hidden phase of Ruddlesden-Popper bilayer nickelate La3Ni2O7. Inorg. Chem. 63, 5020â5026 (2024).
Liu, Z. et al. Electronic correlations and partial gap in the bilayer nickelate La3Ni2O7. Nat. Commun. 15, 7570 (2024).
Luo, Z., Hu, X., Wang, M., Wú, W. & Yao, D.-X. Bilayer two-orbital model of La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 126001 (2023).
Christiansson, V., Petocchi, F. & Werner, P. Correlated electronic structure of La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 206501 (2023).
Liu, Y.-B., Mei, J.-W., Ye, F., Chen, W.-Q. & Yang, F. s±-Wave pairing and the destructive role of apical-oxygen deficiencies in La3Ni2O7 under pressure. Phys. Rev. Lett. 131, 236002 (2023).
Qu, X.-Z. et al. Bilayer tâJâJ⥠model and magnetically mediated pairing in the pressurized nickelate La3Ni2O7. Phys. Rev. Lett. 132, 036502 (2024).
Sakakibara, H., Kitamine, N., Ochi, M. & Kuroki, K. Possible high Tc superconductivity in La3Ni2O7 under high pressure through manifestation of a nearly half-filled bilayer Hubbard model. Phys. Rev. Lett. 132, 106002 (2024).
Wang, L. et al. Structure responsible for the superconducting state in La3Ni2O7 at high-pressure and low-temperature conditions. J. Am. Chem. Soc. 146, 7506â7514 (2024).
Takegami, D. et al. Absence of Ni2+/Ni3+ charge disproportionation and possible roles of O 2p holes in La3Ni2O7âδ revealed by hard X-ray photoemission spectroscopy. Phys. Rev. B 109, 125119 (2024).
Li, Y. D. et al. Ultrafast dynamics of bilayer and trilayer nickelate superconductors. Preprint at arxiv.org/abs/2403.05012 (2024).
Dan, Z. et al. Spin-density-wave transition in double-layer nickelate La3Ni2O7. Preprint at arxiv.org/abs/2402.03952 (2024).
Wang, Y., Jiang, K., Wang, Z., Zhang, F.-C. & Hu, J. Electronic structure and superconductivity in bilayer La3Ni2O7. Preprint at arxiv.org/html/2401.15097v1 (2024).
Chen, X. et al. Electronic and magnetic excitations in La3Ni2O7. Preprint at arxiv.org/abs/2401.12657 (2024).
Xie, T. et al. Neutron scattering studies on the high-Tc superconductor La3Ni2O7âδ at ambient pressure. Preprint at arxiv.org/abs/2401.12635 (2024).
Geisler, B. et al. Optical properties and electronic correlations in La3Ni2O7âδ bilayer nickelates under high pressure. Preprint at arxiv.org/abs/2401.04258 (2023).
Dong, Z. et al. Visualization of oxygen vacancies and self-doped ligand holes in La3Ni2O7âδ. Nature 630, 847â852 (2024).
Kakoi, M. et al. Multiband metallic ground state in multilayered nickelates La3Ni2O7 and La4Ni3O10 probed by 139La-NMR at ambient pressure. J. Phys. Soc. Jpn. 93, 053702 (2024).
Li, F. et al. Design and synthesis of three-dimensional hybrid Ruddlesden-Popper nickelate single crystals. Phys. Rev. Mater. 8, 053401 (2024).
Chen, K. et al. Evidence of spin density waves in La3Ni2O7âδ. Phys. Rev. Lett. 132, 256503 (2024).
Yang, J. et al. Orbital-dependent electron correlation in double-layer nickelate La3Ni2O7. Nat. Commun. 15, 4373 (2024).
Zhang, Y., Lin, L.-F., Moreo, A., Maier, T. A. & Dagotto, E. Structural phase transition, s±-wave pairing, and magnetic stripe order in bilayered superconductor La3Ni2O7 under pressure. Nat. Commun. 15, 2470 (2024).
Jiang, R., Hou, J., Fan, Z., Lang, Z.-J. & Ku, W. Pressure driven fractionalization of ionic spins results in cupratelike high-Tc superconductivity in La3Ni2O7. Phys. Rev. Lett. 132, 126503 (2024).
Zhang, J. et al. High oxygen pressure floating zone growth and crystal structure of the metallic nickelates R4Ni3O10 (Râ=âLa, Pr). Phys. Rev. Mater. 4, 083402 (2020).
Zhang, Z. & Greenblatt, M. Synthesis, structure, and properties of Ln4Ni3O10âδ (Lnâ=âLa, Pr, and Nd). J. Solid State Chem. 117, 236â246 (1995).
Liu, Z. et al. Evidence for charge and spin density waves in single crystals of La3Ni2O7 and La3Ni2O6. Sci. China Phys. Mech. Astron. 66, 217411 (2022).
Fukamachi, T., Oda, K., Kobayashi, Y., Miyashita, T. & Sato, M. Studies on successive electronic state changes in systems with NiO2 planes â139La-NMR/NQRâ. J. Phys. Soc. Jpn. 70, 2757â2764 (2001).
Gopalan, P., McElfresh, M. W., KÄ kol, Z., Spal/ek, J. & Honig, J. M. Influence of oxygen stoichiometry on the antiferromagnetic ordering of single crystals of La2NiO4+δ. Phys. Rev. B 45, 249â255 (1992).
Buttrey, D. J., Honig, J. M. & Rao, C. N. R. Magnetic properties of quasi-two-dimensional La2NiO4. J. Solid State Chem. 64, 287â295 (1986).
Wada, S., Kobayashi, T., Kaburagi, M., Shibutani, K. & Ogawa, R. 139La NQR study of antiferromagnetic La2NiO4+δ. J. Phys. Soc. Jpn. 58, 2658â2661 (1989).
Sun, J. P. et al. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe. Nat. Commun. 7, 12146 (2016).
Sun, J. P. et al. High-Tc superconductivity in FeSe at high pressure: dominant hole carriers and enhanced spin fluctuations. Phys. Rev. Lett. 118, 147004 (2017).
Kumar, R. S. et al. Crystal and electronic structure of FeSe at high pressure and low temperature. J. Phys. Chem. B 114, 12597â12606 (2010).
Uhoya, W. et al. Simultaneous measurement of pressure evolution of crystal structure and superconductivity in FeSe0.92 using designer diamonds. Europhys. Lett. 99, 26002 (2012).
Lu, C., Pan, Z., Yang, F. & Wu, C. Interlayer-coupling-driven high-temperature superconductivity in La3Ni2O7 under pressure. Phys. Rev. Lett. 132, 146002 (2024).
Oh, H. & Zhang, Y.-H. Type-II tâJ model and shared superexchange coupling from Hundâs rule in superconducting La3Ni2O7. Phys. Rev. B 108, 174511 (2023).
Zhang, Z., Greenblatt, M. & Goodenough, J. B. Synthesis, structure, and properties of the layered perovskite La3Ni2O7-δ. J. Solid State Chem. 108, 402â409 (1994).
Chandrasekharan Meenu, P. et al. Electro-oxidation reaction of methanol over La2âxSrxNiO4+δ RuddlesdenâPopper oxides. ACS Appl. Energy Mater. 5, 503â515 (2022).
Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544â549 (2013).
Cheng, J.-G. et al. Integrated-fin gasket for palm cubic-anvil high pressure apparatus. Rev. Sci. Instrum. 85, 093907 (2014).