Miller, L. H., Baruch, D. I., Marsh, K. & Doumbo, O. K. The pathogenic basis of malaria. Nature 415, 673â679 (2002).
Lennartz, F., Lavstsen, T. & Higgins, M. K. Towards an anti-disease malaria vaccine. Emerg. Top. Life Sci. 1, 539â545 (2017).
World Health Organization. World malaria report 2023 (WHO, 2023).
Baruch, D. I. et al. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82, 77â87 (1995).
Smith, J. D. et al. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82, 101â110 (1995).
Su, X. Z. et al. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82, 89â100 (1995).
Petersen, J. E. et al. Protein C system defects inflicted by the malaria parasite protein PfEMP1 can be overcome by a soluble EPCR variant. Thromb. Haemost. 114, 1038â1048 (2015).
Gillrie, M. R. et al. Diverse functional outcomes of Plasmodium falciparum ligation of EPCR: potential implications for malarial pathogenesis. Cell Microbiol. 17, 1883â1899 (2015).
Mosnier, L. O. & Lavstsen, T. The role of EPCR in the pathogenesis of severe malaria. Thromb. Res. 141, S46âS49 (2016).
Obeng-Adjei, N. et al. Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection. JCI Insight https://doi.org/10.1172/jci.insight.137262 (2020).
Rambhatla, J. S. et al. Acquisition of antibodies against endothelial protein C receptor-binding domains of Plasmodium falciparum erythrocyte membrane protein 1 in children with severe malaria. J. Infect. Dis. 219, 808â818 (2019).
Turner, L. et al. IgG antibodies to endothelial protein C receptor-binding cysteine-rich interdomain region domains of Plasmodium falciparum erythrocyte membrane protein 1 are acquired early in life in individuals exposed to malaria. Infect. Immun. 83, 3096â3103 (2015).
Tewey, M. A. et al. Natural immunity to malaria preferentially targets the endothelial protein C receptor-binding regions of PfEMP1s. mSphere 8, e0045123 (2023).
Rask, T. S., Hansen, D. A., Theander, T. G., Gorm, P. A. & Lavstsen, T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes-divide and conquer. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1000933 (2010).
Rajan Raghavan, S. S. et al. Endothelial protein C receptor binding induces conformational changes to severe malaria-associated group A PfEMP1. Structure https://doi.org/10.1016/j.str.2023.07.011 (2023).
Lau, C. K. et al. Structural conservation despite huge sequence diversity allows EPCR binding by the PfEMP1 family implicated in severe childhood malaria. Cell Host Microbe 17, 118â129 (2015).
Bernabeu, M. et al. Binding heterogeneity of Plasmodium falciparum to engineered 3D brain microvessels is mediated by EPCR and ICAM-1. mBio https://doi.org/10.1128/mBio.00420-19 (2019).
Hudetz, A. G. Blood flow in the cerebral capillary network: a review emphasizing observations with intravital microscopy. Microcirculation 4, 233â252 (1997).
Moka, S. et al. Blood flow velocity comparison in the eye capillaries and postcapillary venules between normal pregnant and non-pregnant women. Microvasc. Res. 127, 103926 (2020).
Koutsiaris, A. G. et al. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo. Biorheology 44, 375â386 (2007).
Chen, X. et al. Assessment of single-vessel cerebral blood velocity by phase contrast fMRI. PLoS Biol. 19, e3000923 (2021).
Leech, J. H., Barnwell, J. W., Miller, L. H. & Howard, R. J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J. Exp. Med. 159, 1567â1575 (1984).
Marsh, K. & Howard, R. J. Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science 231, 150â153 (1986).
Udeinya, I. J., Miller, L. H., McGregor, I. A. & Jensen, J. B. Plasmodium falciparum strain-specific antibody blocks binding of infected erythrocytes to amelanotic melanoma cells. Nature 303, 429â431 (1983).
Howard, R. J. et al. Two approximately 300 kilodalton Plasmodium falciparum proteins at the surface membrane of infected erythrocytes. Mol. Biochem. Parasitol. 27, 207â223 (1988).
Doolan, D. L., Dobano, C. & Baird, J. K. Acquired immunity to malaria. Clin. Microbiol. Rev. 22, 13â36 (2009).
Nielsen, M. A. et al. Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J. Immunol. 168, 3444â3450 (2002).
Bull, P. C. et al. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat. Med. 4, 358â360 (1998).
Marsh, K., Otoo, L., Hayes, R. J., Carson, D. C. & Greenwood, B. M. Antibodies to blood stage antigens of Plasmodium falciparum in rural Gambians and their relation to protection against infection. Trans. R. Soc. Trop. Med. Hyg. 83, 293â303 (1989).
Bull, P. C., Lowe, B. S., Kortok, M. & Marsh, K. Antibody recognition of Plasmodium falciparum erythrocyte surface antigens in Kenya: evidence for rare and prevalent variants. Infect. Immun. 67, 733â739 (1999).
Otto, T. D. et al. Evolutionary analysis of the most polymorphic gene family in falciparum malaria. Wellcome Open Res. 4, 193 (2019).
Brazier, A. J., Avril, M., Bernabeu, M., Benjamin, M. & Smith, J. D. Pathogenicity determinants of the human malaria parasite Plasmodium falciparum have ancient origins. mSphere https://doi.org/10.1128/mSphere.00348-16 (2017).
Aleshnick, M., Florez-Cuadros, M., Martinson, T. & Wilder, B. K. Monoclonal antibodies for malaria prevention. Mol. Ther. 30, 1810â1821 (2022).
Cottrell, C. A. et al. Heterologous prime-boost vaccination drives early maturation of HIV broadly neutralizing antibody precursors in humanized mice. Sci. Transl. Med. 16, eadn0223 (2024).
Steichen, J. M. et al. Vaccine priming of rare HIV broadly neutralizing antibody precursors in nonhuman primates. Science 384, eadj8321 (2024).
Xie, Z. et al. mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies. Science 384, eadk0582 (2024).
Schiffner, T. et al. Vaccination induces broadly neutralizing antibody precursors to HIV gp41. Nat. Immunol. 25, 1073â1082 (2024).
Castro, K. M., Scheck, A., Xiao, S. & Correia, B. E. Computational design of vaccine immunogens. Curr. Opin. Biotechnol. 78, 102821 (2022).
Kilama, M. et al. Estimating the annual entomological inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sampling methods in three sites in Uganda. Malar. J. 13, 111 (2014).
Kamya, M. R. et al. Malaria transmission, infection, and disease at three sites with varied transmission intensity in Uganda: implications for malaria control. Am. J. Trop. Med. Hyg. 92, 903â912 (2015).
Mmbando, B. P. et al. A progressive declining in the burden of malaria in north-eastern Tanzania. Malar. J. 9, 216 (2010).
Bushell, K. M., Sollner, C., Schuster-Boeckler, B., Bateman, A. & Wright, G. J. Large-scale screening for novel low-affinity extracellular protein interactions. Genome Res. 18, 622â630 (2008).
Gonzales, S. J. et al. A molecular analysis of memory B cell and antibody responses against Plasmodium falciparum merozoite surface protein 1 in children and adults from Uganda. Front. Immunol. 13, 809264 (2022).
Zajac, P., Islam, S., Hochgerner, H., Lonnerberg, P. & Linnarsson, S. Base preferences in non-templated nucleotide incorporation by MMLV-derived reverse transcriptases. PLoS ONE 8, e85270 (2013).
Kapteyn, J., He, R., McDowell, E. T. & Gang, D. R. Incorporation of non-natural nucleotides into template-switching oligonucleotides reduces background and improves cDNA synthesis from very small RNA samples. BMC Genomics 11, 413 (2010).
Liao, H. X. et al. High-throughput isolation of immunoglobulin genes from single human B cells and expression as monoclonal antibodies. J. Virol. Methods 158, 171â179 (2009).
Alamyar, E., Duroux, P., Lefranc, M. P. & Giudicelli, V. IMGT® tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol. Biol. 882, 569â604 (2012).
Azasi, Y. et al. Infected erythrocytes expressing DC13 PfEMP1 differ from recombinant proteins in EPCR-binding function. Proc. Natl Acad. Sci. USA 115, 1063â1068 (2018).
Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188â1190 (2004).
Gonzales, S. J. et al. Naturally acquired humoral immunity against Plasmodium falciparum malaria. Front. Immunol. 11, 594653 (2020).
Kisalu, N. K. et al. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat. Med. 24, 408â416 (2018).
Turner, L. et al. Severe malaria is associated with parasite binding to endothelial protein C receptor. Nature 498, 502â505 (2013).
Cham, G. K. et al. A semi-automated multiplex high-throughput assay for measuring IgG antibodies against Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) domains in small volumes of plasma. Malar. J. 7, 108 (2008).
Skipper Seabold, J. P. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python in Science Conference (SCIPY 2010) (eds van der Walt, S. & Millman, J.) 92â96 (scipy, Austin, TX, 2010).
Lennartz, F. et al. Structure-guided identification of a family of dual receptor-binding PfEMP1 that is associated with cerebral malaria. Cell Host Microbe 21, 403â414 (2017).
Bachmann, A. & Lavstsen, T. Analysis of var gene transcript patterns by quantitative real-time PCR. Methods Mol. Biol. 2470, 149â171 (2022).
Zheng, Y. et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109, 9342â9347 (2012).
Piatti, L., Howard, C. C., Zheng, Y. & Bernabeu, M. Binding of Plasmodium falciparum-infected red blood cells to engineered 3D microvessels. Methods Mol. Biol. 2470, 557â585 (2022).
Kabsch, W. Xds. Acta Crystallogr. DÂ 66, 125â132 (2010).
Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 69, 1204â1214 (2013).
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861â877 (2019).
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126â2132 (2004).
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519â530 (2018).
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70â82 (2021).
Joosten, R. P., Long, F., Murshudov, G. N. & Perrakis, A. The PDB_REDO server for macromolecular structure model optimization. IUCrJ 1, 213â220 (2014).
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331â332 (2017).
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290â296 (2017).
Tunyasuvunakool, K. et al. Highly accurate protein structure prediction for the human proteome. Nature 596, 590â596 (2021).
Abanades, B. et al. ImmuneBuilder: deep-learning models for predicting the structures of immune proteins. Commun. Biol. 6, 575 (2023).
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 74, 531â544 (2018).
Wang, R. Y. et al. Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. eLife 5, e17219 (2016).
Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligandâprotein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778â2786 (2011).
Pettersen, E. F. et al. UCSF Chimera â a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605â1612 (2004).
Fernandez-Quintero, M. L. et al. Germline-dependent antibody paratope states and pairing specific VHâVL interface dynamics. Front. Immunol. 12, 675655 (2021).
Chodera, J. D. & Noe, F. Markov state models of biomolecular conformational dynamics. Curr. Opin. Struct. Biol. 25, 135â144 (2014).