Friday, June 13, 2025
No menu items!
HomeNatureBrain implantation of soft bioelectronics via embryonic development

Brain implantation of soft bioelectronics via embryonic development

  • Sanes, D. H. et al. Development of the Nervous System (Academic Press, 2011).

  • Smith, J. L. & Schoenwolf, G. C. Neurulation: coming to closure. Trends Neurosci. 20, 510–517 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Randlett, O. et al. Whole-brain activity mapping onto a zebrafish brain atlas. Nat. Methods 12, 1039–1046 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keller, P. J. & Ahrens, M. B. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85, 462–483 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alivisatos, A. P. et al. The brain activity map. Science 339, 1284–1285 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stringer, C. et al. Spontaneous behaviors drive multidimensional, brainwide activity. Science 364, 255 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M. & Keller, P. J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hong, G. & Lieber, C. M. Novel electrode technologies for neural recordings. Nat. Rev. Neurosci. 20, 330–345 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abbott, J. et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chiang, C. H. et al. Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. Sci. Transl. Med. 12, eaay4682 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musk, E. An integrated brain–machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McDole, K. et al. In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 175, 859–876 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasthuri, N. et al. Saturated reconstruction of a volume of neocortex. Cell 162, 648–661 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pijuan-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, X., Zhou, W., Gao, T., Liu, J. & Lieber, C. M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 11, 776–782 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, T. M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875–882 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett. 19, 5781–5789 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Floch, P. et al. Stretchable mesh nanoelectronics for 3D single-cell chronic electrophysiology from developing brain organoids. Adv. Mater. 34, 2106829 (2022).

    Article 

    Google Scholar
     

  • Xu, T. et al. Characterization of the mechanical behavior of SU-8 at microscale by viscoelastic analysis. J. Micromech. Microeng. 26, 105001 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Gupta, P., Bera, M. & Maji, P. K. Nanotailoring of sepiolite clay with poly [styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene]: structure–property correlation. Polym. Adv. Technol. 28, 1428–1437 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chanthasopeephan, T., Desai, J. P. & Lau, A. C. W. Study of soft tissue cutting forces and cutting speeds. Stud. Health Technol. Inform. 98, 56–62 (2004).

    PubMed 

    Google Scholar
     

  • Spruiell Eldridge, S. L. et al. A focal impact model of traumatic brain injury in Xenopus tadpoles reveals behavioral alterations, neuroinflammation, and an astroglial response. Int. J. Mol. Sci. 23, 7578 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yoshino, J. & Tochinai, S. Successful reconstitution of the non‐regenerating adult telencephalon by cell transplantation in Xenopus laevis. Dev. Growth Differ. 46, 523–534 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 156–163 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Kozai, T. D. Y. et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11, 1065–1073 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manita, S. & Ross, W. N. Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons. J. Neurosci. 29, 7833–7845 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ciarleglio, C. M. et al. Multivariate analysis of electrophysiological diversity of Xenopus visual neurons during development and plasticity. Elife 4, e11351 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maden, M. Salamanders as key models for development and regeneration research. Methods Mol. Biol. 2562, 1 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schoonover, C. E., Ohashi, S. N., Axel, R. & Fink, A. J. P. Representational drift in primary olfactory cortex. Nature 594, 541–546 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Denker, M., Yegenoglu, A. & Grün, S. Collaborative HPC-enabled workflows on the HBP Collaboratory using the Elephant framework. Neuroinformatics 19, FZJ-2018-04114 (2018).

  • Cowley, B. et al. DataHigh: graphical user interface for visualizing and interacting with high-dimensional neural activity. J. Neural Eng. 10, 066012–066019 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, X. et al. Single-cell stereo-seq reveals induced progenitor cells involved in axolotl brain regeneration. Science 377, eabp9444 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lust, K. et al. Single-cell analyses of axolotl telencephalon organization, neurogenesis, and regeneration. Science 377, eabp9262 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Takahashi, M. & Osumi, N. The method of rodent whole embryo culture using the rotator-type bottle culture system. J. Vis. Exp. 42, 2170 (2010).

  • Huang, Q. et al. Intravital imaging of mouse embryos. Science 368, 181–186 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jouary, A., Haudrechy, M., Candelier, R. & Sumbre, G. A 2D virtual reality system for visual goal-driven navigation in zebrafish larvae. Sci. Rep. 6, 34015 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Le Floch, P. et al. 3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers. Nat. Nanotechnol. 19, 319–329 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Fowkes, F. M. Attractive forces at interfaces. Ind. Eng. Chem. 56, 40–52 (1964).

    Article 
    CAS 

    Google Scholar
     

  • Karimi, K. et al. Xenbase: a genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Res. 46, D861–D868 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aguilera-Castrejon, A. et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 593, 119–124 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Y., Wilkie, R. & Wilson, V. Methods for precisely localized transfer of cells or DNA into early postimplantation mouse embryos. J. Vis. Exp. 106, e53295 (2015).


    Google Scholar
     

  • Lohmiller, J. J., Swing, S. P. & Hanson, M. M. in The Laboratory Rat 3rd edn (eds Suckow, M. A. et al.) 157–179 (Elsevier, 2020).

  • Vczian, A. S. & Zuber, M. E. A simple behavioral assay for testing visual function in Xenopus laevis. J. Vis. Exp. 88, 51726 (2014).

  • Dong, W. et al. Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum. J. Neurophysiol. 101, 803–815 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Pratt, K. G. & Khakhalin, A. S. Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets. Dis. Models Mech. 6, 1057–1065 (2013).


    Google Scholar
     

  • Klymkowsky, M. W. Whole-mount immunocytochemistry in Xenopus. Cold Spring Harb. Protoc. 2018, pdb-prot097295 (2018).

  • Hamilton, P. W. & Henry, J. J. Prolonged in vivo imaging of Xenopus laevis. Dev. Dyn. 243, 1011–1019 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kamei, M. & Weinstein, B. M. Long-term time-lapse fluorescence imaging of developing zebrafish. Zebrafish 2, 113–123 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Kamei, M., Isogai, S., Pan, W. & Weinstein, B. M. Imaging blood vessels in the zebrafish. Methods Cell. Biol. 100, 27–54 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaure, F. J. et al. A novel and fully automatic spike-sorting implementation with variable number of features. J. Neurophysiol. 120, 1859–1871 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung, J. E. et al. A fully automated approach to spike sorting. Neuron 95, 1381–1394 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buccino, A. P. et al. SpikeInterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartolo, R., Saunders, R. C., Mitz, A. R. & Averbeck, B. B. Information-limiting correlations in large neural populations. J. Neurosci. 40, 1668–1678 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Insel, N. & Barnes, C. A. Differential activation of fast-spiking and regular-firing neuron populations during movement and reward in the dorsal medial frontal cortex. Cereb. Cortex 25, 2631–2647 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Ogden, R. W. Non-linear Elastic Deformations (Courier, 1997).

  • Amar, M. B. & Goriely, A. Growth and instability in elastic tissues. J. Mech. Phys. Solids 53, 2284–2319 (2005).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Garaschuk, O., Hanse, E. & Konnerth, A. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J. Physiol. 507, 219–236 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments