Friday, October 24, 2025
No menu items!
HomeNatureBottom-up design of Ca2+ channels from defined selectivity filter geometry

Bottom-up design of Ca2+ channels from defined selectivity filter geometry

  • Magnus, C. J. et al. Ultrapotent chemogenetics for research and potential clinical applications. Science 364, eaav5282 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jing, M. et al. A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies. Nat. Biotechnol. 36, 726–737 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gouaux, E. & MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yue, L., Navarro, B., Ren, D., Ramos, A. & Clapham, D. E. The cation selectivity filter of the bacterial sodium channel, NaChBac. J. Gen. Physiol. 120, 845–853 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Tang, L. et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505, 56–61 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Nilius, B. et al. The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J. Biol. Chem. 276, 1020–1025 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Ellinor, P. T., Yang, J., Sather, W. A., Zhang, J.-F. & Tsien, R. W. Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron 15, 1121–1132 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J., Elllnor, P. T., Sather, W. A., Zhang, J.-F. & Tsien, R. W. Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366, 158–161 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Meyer, J. O. et al. Disruption of the key Ca2+ binding site in the selectivity filter of neuronal voltage-gated calcium channels inhibits channel trafficking. Cell Rep. 29, 22–33 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Long, S. B., Tao, X., Campbell, E. B. & MacKinnon, R. Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450, 376–382 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Derebe, M. G., Zeng, W., Li, Y., Alam, A. & Jiang, Y. Structural studies of ion permeation and Ca2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Proc. Natl Acad. Sci. USA 108, 592–597 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shen, P. S. et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763–773 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Magnus, C. J. et al. Chemical and genetic engineering of selective ion channel–ligand interactions. Science 333, 1292–1296 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, Z. et al. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 110, 770–782 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Joh, N. H. et al. De novo design of a transmembrane Zn2+-transporting four-helix bundle. Science 346, 1520–1524 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mravic, M. et al. Packing of apolar side chains enables accurate design of highly stable membrane proteins. Science 363, 1418–1423 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mahendran, K. R. et al. A monodisperse transmembrane α-helical peptide barrel. Nat. Chem. 9, 411–419 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Krishnan R, S. et al. Assembly of transmembrane pores from mirror-image peptides. Nat. Commun. 13, 5377 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lear, J. D., Wasserman, Z. R. & DeGrado, W. F. Synthetic amphiphilic peptide models for protein ion channels. Science 240, 1177–1181 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xu, C. et al. Computational design of transmembrane pores. Nature 585, 129–134 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Scott, A. J. et al. Constructing ion channels from water-soluble α-helical barrels. Nat. Chem. 13, 643–650 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Berhanu, S. et al. Sculpting conducting nanopore size and shape through de novo protein design. Science 385, 282–288 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Vorobieva, A. A. et al. De novo design of transmembrane β barrels. Science 371, eabc8182 (2021).

    Article 

    Google Scholar
     

  • Harding, M. M. The geometry of metal–ligand interactions relevant to proteins. Acta Crystallogr. D 55, 1432–1443 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harding, M. M. The geometry of metal–ligand interactions relevant to proteins. II. Angles at the metal atom, additional weak metal–donor interactions. Acta Crystallogr. D 56, 857–867 (2000).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Elinder, F. & Århem, P. Metal ion effects on ion channel gating. Q. Rev. Biophys. 36, 373–427 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Corry, B., Allen, T. W., Kuyucak, S. & Chung, S.-H. Mechanisms of permeation and selectivity in calcium channels. Biophys. J. 80, 195–214 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Hess, P. & Tsien, R. W. Mechanism of ion permeation through calcium channels. Nature 309, 453–456 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sather, W. A. & McCleskey, E. W. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. 65, 133–159 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Almers, W., McCleskey, E. W. & Palade, P. T. A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions. J. Physiol. 353, 565–583 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Cibulsky, S. M. & Sather, W. A. The EEEE locus is the sole high-affinity Ca2+ binding structure in the pore of a voltage-gated Ca2+ channel: block by Ca2+ entering from the intracellular pore entrance. J. Gen. Physiol. 116, 349–362 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Tang, L. et al. Structural basis for inhibition of a voltage-gated Ca2+ channel by Ca2+ antagonist drugs. Nature 537, 117–121 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, J. et al. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. Nature 537, 191–196 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saotome, K., Singh, A. K., Yelshanskaya, M. V. & Sobolevsky, A. I. Crystal structure of the epithelial calcium channel TRPV6. Nature 534, 506–511 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hou, X., Outhwaite, I. R., Pedi, L. & Long, S. B. Cryo-EM structure of the calcium release-activated calcium channel Orai in an open conformation. eLife 9, e62772 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dauparas, J. et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, W., Shenoy, A., Kundrotas, P. & Elofsson, A. Evaluation of AlphaFold-Multimer prediction on multi-chain protein complexes. Bioinformatics 39, btad424 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Feldman, D. et al. Optical pooled screens in human cells. Cell 179, 787–799 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pravda, L. et al. MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update). Nucleic Acids Res. 46, W368–W373 (2018).

    Article 
    CAS 

    Google Scholar
     

  • van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 42, 243–246 (2024).

    Article 

    Google Scholar
     

  • Kim, W. et al. Rapid and sensitive protein complex alignment with Foldseek-Multimer. Nat. Methods 22, 469–472 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A. & Baker, N. A. PDB2PQR: an automated pipeline for the setup of Poisson–Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Jurrus, E. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Vennekens, R. et al. Permeation and gating properties of the novel epithelial Ca2+ channel. J. Biol. Chem. 275, 3963–3969 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Hille, B. Ion Channels of Excitable Membranes (Sinauer, 2001).

  • Voets, T. et al. CaT1 and the calcium release-activated calcium channel manifest distinct pore properties. J. Biol. Chem. 276, 47767–47770 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Yue, L., Peng, J.-B., Hediger, M. A. & Clapham, D. E. CaT1 manifests the pore properties of the calcium-release-activated calcium channel. Nature 410, 705–709 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McNally, B. A., Somasundaram, A., Yamashita, M. & Prakriya, M. Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482, 241–245 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Prakriya, M. The molecular physiology of CRAC channels. Immunol. Rev. 231, 88–98 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Hoth, M. & Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Lansman, J. B., Hess, P. & Tsien, R. W. Blockade of current through single calcium channels by Cd2+, Mg2+, and Ca2+. Voltage and concentration dependence of calcium entry into the pore. J. Gen. Physiol. 88, 321–347 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Bers, D. M., Patton, C. W. & Nuccitelli, R. in Methods in Cell Biology Vol. 99 (ed. Whitaker, M.) 1–26 (Academic Press, 2010).

  • Hou, X., Burstein, S. R. & Long, S. B. Structures reveal opening of the store-operated calcium channel Orai. eLife 7, e36758 (2018).

    Article 

    Google Scholar
     

  • Zhang, K., Wu, H., Hoppe, N., Manglik, A. & Cheng, Y. Fusion protein strategies for cryo-EM study of G protein-coupled receptors. Nat. Commun. 13, 4366 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Brunette, T. J. et al. Exploring the repeat protein universe through computational protein design. Nature 528, 580–584 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Drożdżyk, K. et al. Cryo-EM structures and functional properties of CALHM channels of the human placenta. eLife 9, e55853 (2020).

    Article 

    Google Scholar
     

  • Demura, K. et al. Cryo-EM structures of calcium homeostasis modulator channels in diverse oligomeric assemblies. Sci. Adv. 6, eaba8105 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158–169 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Levental, I. & Lyman, E. Regulation of membrane protein structure and function by their lipid nano-environment. Nat. Rev. Mol. Cell Biol. 24, 107–122 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Dauparas, J. et al. Atomic context-conditioned protein sequence design using LigandMPNN. Nat. Methods 22, 717–723 (2025).

    Article 
    CAS 

    Google Scholar
     

  • Hoover, D. & Lubkowski, J. DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis. Nucleic Acids Res. 30, e43 (2002).

  • Jiang, D., Gamal El-Din, T., Zheng, N. & Catterall, W. A. in Methods in Enzymology Vol. 653 (eds Minor, D. L. & Colecraft, H. M.) Ch. 5 (Academic Press, 2021).

  • Jiang, D. et al. Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell 184, 5151–5162 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, D. et al. Structure of the cardiac sodium channel. Cell 180, 122–134 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lenaeus, M., Gamal El-Din, T. M., Tonggu, L., Zheng, N. & Catterall, W. A. Structural basis for inhibition of the cardiac sodium channel by the atypical antiarrhythmic drug ranolazine. Nat. Cardiovasc. Res. 2, 587–594 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Tonggu, L. et al. Dual receptor-sites reveal the structural basis for hyperactivation of sodium channels by poison-dart toxin batrachotoxin. Nat. Commun. 15, 2306 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mastronarde, D. N. SerialEM: a program for automated tilt series acquisition on Tecnai microscopes using prediction of specimen position. Microsc. Microanal. 9, 1182–1183 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Sun, M. et al. Practical considerations for using K3 cameras in CDS mode for high-resolution and high-throughput single particle cryo-EM. J. Struct. Biol. 213, 107745 (2021).

    Article 

    Google Scholar
     

  • Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun. Biol. 4, 874 (2021).

    Article 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article 
    ADS 

    Google Scholar
     

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments