Thursday, July 17, 2025
No menu items!
HomeNatureBiphasic liquids with shape-shifting and bistable microdomains

Biphasic liquids with shape-shifting and bistable microdomains

  • Poulin, P., Stark, H., Lubensky, T. C. & Weitz, D. A. Novel colloidal interactions in anisotropic fluids. Science 275, 1770–1773 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Zarzar, L. D. et al. Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518, 520–524 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, Y., Wang, X., Mondkar, P., Bukusoglu, E. & Abbott, N. L. Self-reporting and self-regulating liquid crystals. Nature 557, 539–544 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • Wood, T. A., Lintuvuori, J. S., Schofield, A. B., Marenduzzo, D. & Poon, W. C. K. A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science 334, 79–83 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Melcher, J. R. & Taylor, G. I. Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111–146 (1969).


    Google Scholar
     

  • Basnet, B. et al. Soliton walls paired by polar surface interactions in a ferroelectric nematic liquid crystal. Nat. Commun. 13, 3932 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, H., Tai, J. S. B., Wu, J. S. & Smalyukh, I. I. Liquid crystal defect structures with Möbius strip topology. Nat. Phys. 19, 451–459 (2023).

    CAS 

    Google Scholar
     

  • Helfrich, W. Alignment-inversion walls in nematic liquid crystals in the presence of a magnetic field. Phys. Rev. Lett. 21, 1518–1521 (1968).

    CAS 

    Google Scholar
     

  • Atten, P. Electrocoalescence of water droplets in an insulating liquid. J. Electro. 30, 259–270 (1993).

    CAS 

    Google Scholar
     

  • Doane, J. W., Vaz, N. A., Wu, B. G. & Žumer, S. Field controlled light scattering from nematic microdroplets. Appl. Phys. Lett. 48, 269–271 (1986).

    CAS 

    Google Scholar
     

  • Yang, D. K., Huang, X. Y. & Zhu, Y. M. Bistable cholesteric reflective displays: materials and drive schemes. Annu. Rev. Mater. Sci. 27, 117–146 (1997).

    CAS 

    Google Scholar
     

  • Schadt, M., Seiberle, H. & Schuster, A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature 381, 212–215 (1996).

    CAS 

    Google Scholar
     

  • Kato, T. Self-assembly of phase-segregated liquid crystal structures. Science 295, 2414–2418 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Ke, Y. et al. Smart Windows: electro-, thermo-, mechano-, photochromics, and beyond. Adv. Energy Mater. 9, 1902066 (2019).

    CAS 

    Google Scholar
     

  • Morin, S. A. et al. Camouflage and display for soft machines. Science 337, 828–832 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Goodling, A. E. et al. Colouration by total internal reflection and interference at microscale concave interfaces. Nature 566, 523–527 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • He, M. et al. Colloidal diamond. Nature 585, 524–529 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Han, C. et al. Electrocatalytic hydrogenation of alkenes with Pd/carbon nanotubes at an oil–water interface. Nat. Catal. 5, 1110–1119 (2022).

    CAS 

    Google Scholar
     

  • Soukoulis, C. M. & Wegener, M. Optical metamaterials—more bulky and less lossy. Science 330, 1633–1634 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, M. et al. One-step generation of multifunctional polyelectrolyte microcapsules via nanoscale interfacial complexation in emulsion (NICE). ACS Nano 9, 8269–8278 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Brosseau, Q. & Vlahovska, P. M. Streaming from the equator of a drop in an external electric field. Phys. Rev. Lett. 119, 034501 (2017).

    PubMed 

    Google Scholar
     

  • Schäffer, E., Thurn-Albrecht, T., Russell, T. P. & Steiner, U. Electrically induced structure formation and pattern transfer. Nature 403, 874–877 (2000).

    PubMed 

    Google Scholar
     

  • Squires, T. M. & Bazant, M. Z. Breaking symmetries in induced-charge electro-osmosis and electrophoresis. J. Fluid Mech. 560, 65–101 (2006).

    MathSciNet 

    Google Scholar
     

  • Muševič, I., Škarabot, M., Tkalec, U., Ravnik, M. & Žumer, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313, 954–958 (2006).

    PubMed 

    Google Scholar
     

  • Poulin, P. & Weitz, D. A. Inverted and multiple nematic emulsions. Phys. Rev. E 57, 626–637 (1998).

    CAS 

    Google Scholar
     

  • Vollmer, D., Hinze, G., Poon, W. C. K., Cleaver, J. & Cates, M. E. The origin of network formation in colloid-liquid crystal composites. J. Phys. Condens. Matter 16, L227 (2004).

    CAS 

    Google Scholar
     

  • Williams, T. J. & Bailey, A. G. Changes in the size distribution of a water-in-oil emulsion due to electric field induced coalescence. Annu. Meet. Ind. Appl. Soc. IAS84, 1162–1166 (1984).


    Google Scholar
     

  • Eow, J. S., Ghadiri, M., Sharif, A. O. & Williams, T. J. Electrostatic enhancement of coalescence of water droplets in oil: a review of the current understanding. Chem. Eng. J. 84, 173–192 (2001).

    CAS 

    Google Scholar
     

  • Ristenpart, W. D., Bird, J. C., Belmonte, A., Dollar, F. & Stone, H. A. Non-coalescence of oppositely charged drops. Nature 461, 377–380 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Loudet, J. C. & Poulin, P. Application of an electric field to colloidal particles suspended in a liquid-crystal solvent. Phys. Rev. Lett. 87, 165503 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Luo, Y., Beller, D. A., Boniello, G., Serra, F. & Stebe, K. J. Tunable colloid trajectories in nematic liquid crystals near wavy walls. Nat. Commun. 9, 3841 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hermanson, K. D., Lumsdon, S. O., Williams, J. P., Kaler, E. W. & Velev, O. D. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 294, 1082–1086 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • Buehler, W. J., Gilfrich, J. V. & Wiley, R. C. Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J. Appl. Phys. 34, 1475–1477 (1963).

    CAS 

    Google Scholar
     

  • Lee, S. et al. Shape memory in self-adapting colloidal crystals. Nature 610, 674–679 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Uchida, T. & Wada, M. Guest-host type liquid crystal displays. Mol. Cryst. Liq. Cryst. 63, 19–43 (1981).

    CAS 

    Google Scholar
     

  • Kim, M. et al. Fabrication of microcapsules for dye-doped polymer-dispersed liquid crystal-based smart windows. ACS Appl. Mater. Interfaces 7, 17904–17909 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • Park, B. J. et al. Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at the oil-water interface. Langmuir 24, 1686–1694 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • Grace, H. P. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems. Chem. Eng. Commun. 14, 225–277 (1982).

    CAS 

    Google Scholar
     

  • Patrício, P., Leal, C. R., Pinto, L. F. V., Boto, A. & Cidade, M. T. Electro-rheology study of a series of liquid crystal cyanobiphenyls: experimental and theoretical treatment. Liq. Cryst. 39, 25–37 (2012).


    Google Scholar
     

  • Loudet, J. C., Barois, P. & Poulin, P. Colloidal ordering from phase separation in a liquid-crystalline continuous phase. Nature 407, 611–613 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Clarendon Press, 1993).

  • Gu, Y. & Abbott, N. L. Observation of Saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev. Lett. 85, 4719–4722 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Helfrich, W. Conduction‐induced alignment of nematic liquid crystals: basic model and stability considerations. J. Chem. Phys. 51, 4092–4105 (1969).

    CAS 

    Google Scholar
     

  • Carr, E. F. Influence of an electric field on the dielectric loss of the liquid crystal p‐azoxyanisole. J. Chem. Phys. 39, 1979–1983 (1963).

    CAS 

    Google Scholar
     

  • Lubensky, T. C., Pettey, D., Currier, N. & Stark, H. Topological defects and interactions in nematic emulsions. Phys. Rev. E 57, 610–625 (1998).

    CAS 

    Google Scholar
     

  • Klingenberg, D. J., Zukoski, C. F. & Hill, J. C. Kinetics of structure formation in electrorheological suspensions. J. Appl. Phys. 73, 4644–4648 (1993).

    CAS 

    Google Scholar
     

  • Shkrob, I. A., Sauer, M. C. & Trifunac, A. D. High-mobility ions in the viscous hydrocarbon squalane. J. Phys. Chem. 100, 5993–6002 (1996).

    CAS 

    Google Scholar
     

  • Arada Pérez, M. D. L. A., Marín, L. P., Quintana, J. C. & Yazdani-Pedram, M. Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination. Sensors Actuators. B Chem. 89, 262–268 (2003).


    Google Scholar
     

  • Shen, Y. & Dierking, I. Recent progresses on experimental investigations of topological and dissipative solitons in liquid crystals. Crystals 12, 94 (2022).

    CAS 

    Google Scholar
     

  • Gardiner, D. J., Morris, S. M. & Coles, H. J. High-efficiency multistable switchable glazing using smectic A liquid crystals. Sol. Energy Mater. Sol. Cells 93, 301–306 (2009).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments