Thursday, May 8, 2025
No menu items!
HomeNatureBioremediation of complex organic pollutants by engineered Vibrio natriegens

Bioremediation of complex organic pollutants by engineered Vibrio natriegens

  • Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, X. et al. High salinity inhibits soil bacterial community mediating nitrogen cycling. Appl. Environ. Microbiol. 87, e01366–21 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy, C. M. et al. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc. Natl Acad. Sci. USA 109, 20229–20234 (2011).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huynh, B. Q. et al. Public health impacts of an imminent Red Sea oil spill. Nat. Sustainability 4, 1084–1091 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Dvořák, P. et al. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 35, 845–866 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Bhatt, P. et al. Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit. Rev. Biotechnol. 41, 317–338 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Atlas, R. M. & Hazen, T. C. Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ. Sci. Technol. 45, 6709–6715 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, J. et al. Environmental impacts and remediation of dye-containing wastewater. Nat. Rev. Earth Environ. 4, 785–803 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ahmadizadeh, R., Shokrollahzadeh, S., Latifi, S. M., Samimi, A. & Pendashteh, A. Application of halophilic microorganisms in osmotic membrane bioreactor (OMBR) for reduction of volume and organic load of produced water. J. Water Process Eng. 37, 101422 (2020).

    Article 

    Google Scholar
     

  • Weinstock, M. T. et al. Vibrio natriegens as a fast-growing host for molecular biology. Nat. Methods 13, 849–851 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eagon, R. G. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J. Bacteriol. 83, 736–737 (1962).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ellis, G. A. et al. Exploiting the feedstock flexibility of the emergent synthetic biology chassis Vibrio natriegens for engineered natural product production. Mar. Drugs 17, 679 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teufel, M. et al. A multifunctional system for genome editing and large-scale interspecies gene transfer. Nat. Commun. 13, 3430 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stukenberg, D. et al. NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens. Commun. Biol. 5, 265 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dalia, T. N. et al. Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS Synth. Biol. 6, 1650–1655 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, H. G. et al. Vibrio sp. dhg as a platform for the biorefinery of brown macroalgae. Nat. Commun. 10, 2486 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denkin, S. M. & Nelson, D. R. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl. Environ. Microbiol. 65, 3555–3560 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutanda, I. et al. Bacterial membrane transporter systems for aromatic compounds: regulation, engineering, and biotechnological applications. Biotechnol. Adv. 59, 107952 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramos, J. L. et al. Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 56, 743–768 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoff, J. et al. Vibrio natriegens: an ultrafast-growing marine bacterium as emerging synthetic biology chassis. Environ. Microbiol. 22, 4394–4408 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Tschirhart, T. et al. Synthetic biology tools for the fast-growing marine bacterium Vibrio natriegens. ACS Synth. Biol. 8, 2069–2079 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. H. et al. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nat. Microbiol. 4, 1105–1113 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fong, K. P., Goh, C. B. & Tan, H. M. Characterization and expression of the plasmid-borne bedD gene from Pseudomonas putida ML2, which codes for a NAD+-dependent cis-benzene dihydrodiol dehydrogenase. J. Bacteriol. 178, 5592–5601 (1996).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Assinder, S. J. & Williams, P. A. in Advances in Microbial Physiology, Vol. 31 (eds Rose, A. H. & Tempest, D. W.) 1–69 (Academic, 1990).

  • Kasai, Y., Inoue, J. & Harayama, S. The TOL plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake. J. Bacteriol. 183, 6662–6666 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Appl. Environ. Microbiol. 104, 427–437 (2020).

    CAS 

    Google Scholar
     

  • Simon, M. J. et al. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127, 31–37 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, H. et al. Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds. J. Bacteriol. 193, 6789–6790 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kasuga, K. et al. Cloning of dfdA genes from Terrabacter sp. strain DBF63 encoding dibenzofuran 4,4a-dioxygenase and heterologous expression in Streptomyces lividans. Appl. Microbiol. Biotechnol. 97, 4485–4498 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Denome, S. A., Olson, E. S. & Young, K. D. Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 59, 2837–2843 (1993).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, S. et al. Efficient de novo assembly and modification of large DNA fragments. Sci. China Life Sci. 65, 1445–1455 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Seeger, M. et al. Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl. Environ. Microbiol. 65, 3614–3621 (1999).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Lorenzo, V., Pérez-Pantoja, D. & Nikel, P. I. Pseudomonas putida KT2440: the long journey of a soil-dweller to become a synthetic biology chassis. J. Bacteriol. 206, e00136-24 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, L. et al. Establishment of a salt-induced bioremediation platform from marine Vibrio natriegens. Commun. Biol. 5, 1352 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sandberg, T. E. et al. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56, 1–16 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, M. et al. Comparative toxicity of chlorinated saline and freshwater wastewater effluents to marine organisms. Environ. Sci. Technol. 49, 14475–14483 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lu, Q., Liang, Q. & Wang, S. Burning question: rethinking organohalide degradation strategy for bioremediation applications. Microb. Biotechnol. 17, e14539 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Isobe, A. et al. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nat. Commun. 10, 417 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Si, J. et al. Porous composite architecture bestows Fe-based glassy alloy with high and ultra-durable degradation activity in decomposing azo dye. J. Hazard. Mater. 388, 122043 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khandare, S. D. et al. Biodegradation and decolorization of trypan blue azo dye by marine bacteria Vibrio sp. JM-17. Biocatal. Agric. Biotechnol. 51, 102802 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Peng, P. et al. Organohalide-respiring Desulfoluna species isolated from marine environments. ISME J. 14, 815–827 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nat. Commun. 13, 5360 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, H. et al. An intelligent synthetic bacterium for chronological toxicant detection, biodegradation, and its subsequent suicide. Adv. Sci. 10, 2304318 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Specht, D. A. et al. Efficient natural plasmid transformation of Vibrio natriegens enables zero-capital molecular biology. PNAS Nexus 3, pgad444 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, Q. Seamless cloning and gene fusion. Trends Biotechnol. 23, 199–207 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, W. et al. Precise genome engineering in Pseudomonas using phage-encoded homologous recombination and the Cascade–Cas3 system. Nat. Protoc. 18, 2642–2670 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bopp, L. H., Chakrabarty, A. M. & Ehrlich, H. L. Chromate resistance plasmid in Pseudomonas fluorescens. J. Bacteriol. 155, 1105–1109 (1983).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gal-Mor, O. et al. A novel secretion pathway of Salmonella enterica acts as an antivirulence modulator during salmonellosis. PLoS Pathog. 4, e1000036 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chan, L. Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005.0018 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gai, Z. et al. Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl. Environ. Microbiol. 73, 2832–2838 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Y. et al. A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways. J. Hazard. Mater. 403, 123956 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gressel, S. et al. CDK9-dependent RNA polymerase II pausing controls transcription initiation. eLife 6, e29736 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Biglari, N. et al. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat. Neurosci. 24, 913–929 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments