Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).
Li, X. et al. High salinity inhibits soil bacterial community mediating nitrogen cycling. Appl. Environ. Microbiol. 87, e01366–21 (2021).
Reddy, C. M. et al. Composition and fate of gas and oil released to the water column during the Deepwater Horizon oil spill. Proc. Natl Acad. Sci. USA 109, 20229–20234 (2011).
Huynh, B. Q. et al. Public health impacts of an imminent Red Sea oil spill. Nat. Sustainability 4, 1084–1091 (2021).
Dvořák, P. et al. Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology. Biotechnol. Adv. 35, 845–866 (2017).
Bhatt, P. et al. Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit. Rev. Biotechnol. 41, 317–338 (2021).
Atlas, R. M. & Hazen, T. C. Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ. Sci. Technol. 45, 6709–6715 (2011).
Lin, J. et al. Environmental impacts and remediation of dye-containing wastewater. Nat. Rev. Earth Environ. 4, 785–803 (2023).
Ahmadizadeh, R., Shokrollahzadeh, S., Latifi, S. M., Samimi, A. & Pendashteh, A. Application of halophilic microorganisms in osmotic membrane bioreactor (OMBR) for reduction of volume and organic load of produced water. J. Water Process Eng. 37, 101422 (2020).
Weinstock, M. T. et al. Vibrio natriegens as a fast-growing host for molecular biology. Nat. Methods 13, 849–851 (2016).
Eagon, R. G. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes. J. Bacteriol. 83, 736–737 (1962).
Ellis, G. A. et al. Exploiting the feedstock flexibility of the emergent synthetic biology chassis Vibrio natriegens for engineered natural product production. Mar. Drugs 17, 679 (2019).
Teufel, M. et al. A multifunctional system for genome editing and large-scale interspecies gene transfer. Nat. Commun. 13, 3430 (2022).
Stukenberg, D. et al. NT-CRISPR, combining natural transformation and CRISPR-Cas9 counterselection for markerless and scarless genome editing in Vibrio natriegens. Commun. Biol. 5, 265 (2022).
Dalia, T. N. et al. Multiplex genome editing by natural transformation (MuGENT) for synthetic biology in Vibrio natriegens. ACS Synth. Biol. 6, 1650–1655 (2017).
Lim, H. G. et al. Vibrio sp. dhg as a platform for the biorefinery of brown macroalgae. Nat. Commun. 10, 2486 (2019).
Denkin, S. M. & Nelson, D. R. Induction of protease activity in Vibrio anguillarum by gastrointestinal mucus. Appl. Environ. Microbiol. 65, 3555–3560 (1999).
Mutanda, I. et al. Bacterial membrane transporter systems for aromatic compounds: regulation, engineering, and biotechnological applications. Biotechnol. Adv. 59, 107952 (2022).
Ramos, J. L. et al. Mechanisms of solvent tolerance in gram-negative bacteria. Annu. Rev. Microbiol. 56, 743–768 (2002).
Hoff, J. et al. Vibrio natriegens: an ultrafast-growing marine bacterium as emerging synthetic biology chassis. Environ. Microbiol. 22, 4394–4408 (2020).
Tschirhart, T. et al. Synthetic biology tools for the fast-growing marine bacterium Vibrio natriegens. ACS Synth. Biol. 8, 2069–2079 (2019).
Lee, H. H. et al. Functional genomics of the rapidly replicating bacterium Vibrio natriegens by CRISPRi. Nat. Microbiol. 4, 1105–1113 (2019).
Fong, K. P., Goh, C. B. & Tan, H. M. Characterization and expression of the plasmid-borne bedD gene from Pseudomonas putida ML2, which codes for a NAD+-dependent cis-benzene dihydrodiol dehydrogenase. J. Bacteriol. 178, 5592–5601 (1996).
Assinder, S. J. & Williams, P. A. in Advances in Microbial Physiology, Vol. 31 (eds Rose, A. H. & Tempest, D. W.) 1–69 (Academic, 1990).
Kasai, Y., Inoue, J. & Harayama, S. The TOL plasmid pWW0 xylN gene product from Pseudomonas putida is involved in m-xylene uptake. J. Bacteriol. 183, 6662–6666 (2001).
Liu, Y. et al. Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Appl. Environ. Microbiol. 104, 427–437 (2020).
Simon, M. J. et al. Sequences of genes encoding naphthalene dioxygenase in Pseudomonas putida strains G7 and NCIB 9816-4. Gene 127, 31–37 (1993).
Tang, H. et al. Genome sequence of Pseudomonas putida strain B6-2, a superdegrader of polycyclic aromatic hydrocarbons and dioxin-like compounds. J. Bacteriol. 193, 6789–6790 (2011).
Kasuga, K. et al. Cloning of dfdA genes from Terrabacter sp. strain DBF63 encoding dibenzofuran 4,4a-dioxygenase and heterologous expression in Streptomyces lividans. Appl. Microbiol. Biotechnol. 97, 4485–4498 (2013).
Denome, S. A., Olson, E. S. & Young, K. D. Identification and cloning of genes involved in specific desulfurization of dibenzothiophene by Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 59, 2837–2843 (1993).
Jiang, S. et al. Efficient de novo assembly and modification of large DNA fragments. Sci. China Life Sci. 65, 1445–1455 (2022).
Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017).
Seeger, M. et al. Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl. Environ. Microbiol. 65, 3614–3621 (1999).
de Lorenzo, V., Pérez-Pantoja, D. & Nikel, P. I. Pseudomonas putida KT2440: the long journey of a soil-dweller to become a synthetic biology chassis. J. Bacteriol. 206, e00136-24 (2024).
Huang, L. et al. Establishment of a salt-induced bioremediation platform from marine Vibrio natriegens. Commun. Biol. 5, 1352 (2022).
Sandberg, T. E. et al. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56, 1–16 (2019).
Yang, M. et al. Comparative toxicity of chlorinated saline and freshwater wastewater effluents to marine organisms. Environ. Sci. Technol. 49, 14475–14483 (2015).
Lu, Q., Liang, Q. & Wang, S. Burning question: rethinking organohalide degradation strategy for bioremediation applications. Microb. Biotechnol. 17, e14539 (2024).
Isobe, A. et al. Abundance of non-conservative microplastics in the upper ocean from 1957 to 2066. Nat. Commun. 10, 417 (2019).
Si, J. et al. Porous composite architecture bestows Fe-based glassy alloy with high and ultra-durable degradation activity in decomposing azo dye. J. Hazard. Mater. 388, 122043 (2020).
Khandare, S. D. et al. Biodegradation and decolorization of trypan blue azo dye by marine bacteria Vibrio sp. JM-17. Biocatal. Agric. Biotechnol. 51, 102802 (2023).
Peng, P. et al. Organohalide-respiring Desulfoluna species isolated from marine environments. ISME J. 14, 815–827 (2020).
Zhang, Z. et al. Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nat. Commun. 13, 5360 (2022).
Liu, H. et al. An intelligent synthetic bacterium for chronological toxicant detection, biodegradation, and its subsequent suicide. Adv. Sci. 10, 2304318 (2023).
Specht, D. A. et al. Efficient natural plasmid transformation of Vibrio natriegens enables zero-capital molecular biology. PNAS Nexus 3, pgad444 (2024).
Lu, Q. Seamless cloning and gene fusion. Trends Biotechnol. 23, 199–207 (2005).
Zheng, W. et al. Precise genome engineering in Pseudomonas using phage-encoded homologous recombination and the Cascade–Cas3 system. Nat. Protoc. 18, 2642–2670 (2023).
Bopp, L. H., Chakrabarty, A. M. & Ehrlich, H. L. Chromate resistance plasmid in Pseudomonas fluorescens. J. Bacteriol. 155, 1105–1109 (1983).
Gal-Mor, O. et al. A novel secretion pathway of Salmonella enterica acts as an antivirulence modulator during salmonellosis. PLoS Pathog. 4, e1000036 (2008).
Chan, L. Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005.0018 (2005).
Gai, Z. et al. Cometabolic degradation of dibenzofuran and dibenzothiophene by a newly isolated carbazole-degrading Sphingomonas sp. strain. Appl. Environ. Microbiol. 73, 2832–2838 (2007).
Liu, Y. et al. A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways. J. Hazard. Mater. 403, 123956 (2021).
Gressel, S. et al. CDK9-dependent RNA polymerase II pausing controls transcription initiation. eLife 6, e29736 (2017).
Biglari, N. et al. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat. Neurosci. 24, 913–929 (2021).