Thursday, January 22, 2026
No menu items!
HomeNatureBiological insights into schizophrenia from ancestrally diverse populations

Biological insights into schizophrenia from ancestrally diverse populations

  • van der Ven, E. et al. Ethnoracial risk variation across the psychosis continuum in the US: a systematic review and meta-analysis. JAMA Psychiatry 81, 447–455 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • International Schizophrenia, Consortium et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460, 748–752 (2009).

    Article 

    Google Scholar
     

  • de Candia, T. R. et al. Additive genetic variation in schizophrenia risk is shared by populations of African and European descent. Am. J. Hum. Genet. 93, 463–470 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lam, M. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat. Genet. 51, 1670–1678 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gaziano, J. M. et al. Million Veteran Program: a mega-biobank to study genetic influences on health and disease. J. Clin. Epidemiol. 70, 214–223 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 618, 774–781 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bigdeli, T. B. et al. Penetrance and pleiotropy of polygenic risk scores for schizophrenia, bipolar disorder, and depression among adults in the US Veterans Affairs health care system. JAMA Psychiatry 79, 1092–1101 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Harvey, P. D. et al. The genetics of functional disability in schizophrenia and bipolar illness: methods and initial results for VA cooperative study #572. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 165B, 381–389 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • The All of Us Research Program Investigators. The “All of Us” Research Program. N. Engl. J. Med. 381, 668–676 (2019).

    Article 
    PubMed Central 

    Google Scholar
     

  • Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502–508 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nanou, E. & Catterall, W. A. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98, 466–481 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6, 708–716 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Celestino-Soper, P. B. S. et al. A common X-linked inborn error of carnitine biosynthesis may be a risk factor for nondysmorphic autism. Proc. Natl Acad. Sci. USA 109, 7974–7981 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zou, Y., Carbonetto, P., Wang, G. & Stephens, M. Fine-mapping from summary data with the “Sum of Single Effects” model. PLoS Genet. 18, e1010299 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gao, B. & Zhou, X. MESuSiE enables scalable and powerful multi-ancestry fine-mapping of causal variants in genome-wide association studies. Nat. Genet. 56, 170–179 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yuan, K. et al. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. Nat. Genet. 56, 1841–1850 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peyrot, W. J. & Price, A. L. Identifying loci with different allele frequencies among cases of eight psychiatric disorders using CC-GWAS. Nat. Genet. 53, 445–454 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Atkinson, E. G. et al. Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nat. Genet. 53, 195–204 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Zhu, K. et al. Multi-omic profiling of the developing human cerebral cortex at the single-cell level. Sci. Adv. 9, eadg3754 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clarence, T. et al. Multiomic single-cell profiling identifies critical regulators of postnatal brain. Nat. Genet. 57, 591–603 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fullard, J. F. et al. Population-scale cross-disorder atlas of the human prefrontal cortex at single-cell resolution. Sci. Data 12, 954 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, D. et al. Single-cell atlas of transcriptomic vulnerability across brain disorders. Nature (in the press).

  • Zhang, M. J. et al. Polygenic enrichment distinguishes disease associations of individual cells in single-cell RNA-seq data. Nat. Genet. 54, 1572–1580 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Venkatesh, S. et al. Single-nucleus transcriptome-wide association study of human brain disorders. Preprint at medRxiv https://doi.org/10.1101/2024.11.04.24316495 (2024).

  • Cano-Gamez, E. & Trynka, G. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet. 11, 424 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic differences in discovery of genetic effects on gene expression and complex traits. Nat. Genet. 55, 1866–1875 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nasser, J. et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 593, 238–243 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cochet-Bissuel, M., Lory, P. & Monteil, A. The sodium leak channel, NALCN, in health and disease. Front. Cell. Neurosci. 8, 132 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, K.-S., Liu, X.-F. & Aragam, N. A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophr. Res. 124, 192–199 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Ots, H. D., Tracz, J. A., Vinokuroff, K. E. & Musto, A. E. CD40–CD40L in neurological disease. Int. J. Mol. Sci. 23, 4115 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roussos, P. et al. Convergent findings for abnormalities of the NF-κB signaling pathway in schizophrenia. Neuropsychopharmacology 38, 533–539 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Zheutlin, A. B. et al. Penetrance and pleiotropy of polygenic risk scores for schizophrenia in 106,160 patients across four health care systems. Am. J. Psychiatry 176, 846–855 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bigdeli, T. B. et al. Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry. Mol. Psychiatry 25, 2455–2467 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bigdeli, T. B. et al. Genome-wide association studies of schizophrenia and bipolar disorder in a diverse cohort of US veterans. Schizophr. Bull. 47, 517–529 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Stevenson, A. et al. Neuropsychiatric Genetics of African Populations-Psychosis (NeuroGAP-Psychosis): a case-control study protocol and GWAS in Ethiopia, Kenya, South Africa and Uganda. BMJ Open 9, e025469 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, T. et al. INTREPID II: protocol for a multistudy programme of research on untreated psychosis in India, Nigeria and Trinidad. BMJ Open 10, e039004 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruxel, E. M. et al. Psychiatric genetics in the diverse landscape of Latin American populations. Nat. Genet. 57, 1074–1088 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holla, B. et al. A cross ancestry genetic study of psychiatric disorders from India. Preprint at medRxiv https://doi.org/10.1101/2024.04.25.24306377 (2024).

  • Gitik, M., Bingaman, L. A., Rowland, L. M. & Marques, A. H. The NIMH supports more comprehensive and inclusive genomic studies in psychiatry. World Psychiatry 23, 292–293 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, J. et al. Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature 460, 753–757 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calkins, M. E. et al. The Consortium on the Genetics of Endophenotypes in Schizophrenia: model recruitment, assessment, and endophenotyping methods for a multisite collaboration. Schizophr. Bull. 33, 33–48 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Hunter-Zinck, H. et al. Genotyping array design and data quality control in the Million Veteran Program. Am. J. Hum. Genet. 106, 535–548 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • The All of Us Research Program Genomics Investigators. Genomic data in the All of Us Research Program. Nature 627, 340–346 (2024).

    Article 

    Google Scholar
     

  • Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, B. & Eskin, E. Random-effects model aimed at discovering associations in meta-analysis of genome-wide association studies. Am. J. Hum. Genet. 88, 586–598 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • CONVERGE consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523, 588–591 (2015).

    Article 
    PubMed Central 

    Google Scholar
     

  • Maples, B. K., Gravel, S., Kenny, E. E. & Bustamante, C. D. RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. Am. J. Hum. Genet. 93, 278–288 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barbeira, A. N. et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat. Commun. 9, 1825 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, S. H. et al. Estimating the proportion of variation in susceptibility to schizophrenia captured by common SNPs. Nat. Genet. 44, 247–250 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berner, D. Allele frequency difference AFD–an intuitive alternative to FST for quantifying genetic population differentiation. Genes 10, 308 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A. & Smoller, J. W. Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nat. Commun. 10, 1776 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations. Bioinformatics 26, 1205–1210 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Genovese G. et al. BCFtools/liftover: an accurate and comprehensive tool to convert genetic variants across genome assemblies. Bioinformatics 40, btae038 (2024).

  • RELATED ARTICLES

    Most Popular

    Recent Comments