Sunday, November 24, 2024
No menu items!
HomeNatureBioelastic state recovery for haptic sensory substitution

Bioelastic state recovery for haptic sensory substitution

  • Bolanowski, S. J. et al. Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84, 1680–1694 (1988).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Handler, A. & Ginty, D. D. The mechanosensory neurons of touch and their mechanisms of activation. Nat. Rev. Neurosci. 22, 521–537 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lederman, S. J. & Klatzky, R. L. Hand movements: a window into haptic object recognition. Cogn. Psychol. 19, 342–368 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lederman, S. J. & Klatzky, R. L. Haptic perception: a tutorial. Atten. Percept. Psychophys. 71, 1439–1459 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shull, P. B. & Damian, D. D. Haptic wearables as sensory replacement, sensory augmentation and trainer – a review. J. Neuroeng. Rehabil. 12, 59 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ko, S. H. & Rogers, J. Functional materials and devices for XR (VR/AR/MR) applications. Adv. Funct. Mater. 31, 2106546 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Z. et al. Active mechanical haptics with high-fidelity perceptions for immersive virtual reality. Nat. Mach. Intell. 5, 643–655 (2023).

    Article 

    Google Scholar
     

  • Lin, W. et al. Super-resolution wearable electrotactile rendering system. Sci. Adv. 8, eabp8738 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, X. et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 575, 473–479 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Jung, Y. H. et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5, 374–385 (2022).

    Article 

    Google Scholar
     

  • Leroy, E. & Shea, H. Hydraulically amplified electrostatic taxels (HAXELs) for full body haptics. Adv. Mater. Technol. 8, 2300242 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Turecek, J., Lehnert, B. P. & Ginty, D. D. The encoding of touch by somatotopically aligned dorsal column subdivisions. Nature 612, 310–315 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neubarth, N. L. et al. Meissner corpuscles and their spatially intermingled afferents underlie gentle touch perception. Science 368, eabb2751 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daly, C. H. Biomechanical properties of dermis. J. Invest. Dermatol. 79, 17s–20s (1982).

    Article 
    PubMed 

    Google Scholar
     

  • Maeno, T., Kobayashi, K. & Yamazaki, N. Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int. J. Ser. C 41, 94–100 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Klatzky, R. L. & Peck, J. Please touch: object properties that invite touch. IEEE Trans. Haptics 5, 139–147 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grasso, G., Rosset, S. & Shea, H. Fully 3D-printed, stretchable, and conformable haptic interfaces. Adv. Funct. Mater. 33, 2213821 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Qi, J. et al. HaptGlove—untethered pneumatic glove for multimode haptic feedback in reality–virtuality continuum. Adv. Sci. 10, 2301044 (2023).

    Article 

    Google Scholar
     

  • Zhu, M. et al. in Proc. 2020 CHI Conference on Human Factors in Computing Systems 1–12 (Association for Computing Machinery, 2020).

  • Song, K. et al. Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci. Rep. 9, 8988 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Takahashi, N., Takahashi, H. & Koike, H. in Proc. 2019 IEEE World Haptics Conference (WHC) 217–222 (IEEE, 2019).

  • Haga, Y. et al. Dynamic Braille display using SMA coil actuator and magnetic latch. Sens. Actuators A Phys. 119, 316–322 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Karastoyanov, D. N., Atanassova, V. K. & Doukovska, L. A. in Proc. Third International Conference on Telecommunications and Remote Sensing 88–93 (SciTePress, 2014).

  • Vechev, V. et al. in Proc. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 312–320 (IEEE, 2019).

  • Song, E. et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat. Biomed. Eng. 5, 759–771 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, D. et al. Miniaturization of mechanical actuators in skin-integrated electronics for haptic interfaces. Microsyst. Nanoeng. 7, 85 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dhong, C. et al. Role of indentation depth and contact area on human perception of softness for haptic interfaces. Sci. Adv. 5, eaaw8845 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grigorii, R. V., Colgate, J. E. & Klatzky, R. The spatial profile of skin indentation shapes tactile perception across stimulus frequencies. Sci. Rep. 12, 13185 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lu, L., Leanza, S. & Zhao, R. R. Origami with rotational symmetry: a review on their mechanics and design. Appl. Mech. Rev. 75, 050801 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, C. et al. Plug & play origami modules with all-purpose deformation modes. Nat. Commun. 14, 4329 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nolan, M. F. Quantitative measure of cutaneous sensation: two-point discrimination values for the face and trunk. Phys. Ther. 65, 181–185 (1985).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mancini, F. et al. Whole-body mapping of spatial acuity for pain and touch. Ann. Neurol. 75, 917–924 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wright, I. C. et al. The influence of foot positioning on ankle sprains. J. Biomech. 33, 513–519 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lysdal, F. G. et al. What have we learnt from quantitative case reports of acute lateral ankle sprains injuries and episodes of ‘giving-way’ of the ankle joint, and what shall we further investigate? Sport. Biomech. 21, 359–379 (2022).

    Article 

    Google Scholar
     

  • Leek, M. R. Adaptive procedures in psychophysical research. Percept. Psychophys. 63, 1279–1292 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, J. T. et al. Mechanics of vibrotactile sensors for applications in skin-interfaced haptic systems. Extreme Mech. Lett. 58, 101940 (2023).

    Article 

    Google Scholar
     

  • Jang, K. I. et al. Soft network composite materials with deterministic and bio-inspired designs. Nat. Commun. 6, 6566 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Girard, G., Martiny, M. & Mercier, S. Experimental characterization of rolled annealed copper film used in flexible printed circuit boards: identification of the elastic-plastic and low-cycle fatigue behaviors. Microelectron. Reliab. 115, 113976 (2020).

    Article 
    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments