Feng, X. et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature 597, 516â521 (2021).
Kelly, L. T. et al. Fire and biodiversity in the Anthropocene. Science 370, eabb0355 (2020).
Peterson, D. A. et al. Australiaâs Black Summer pyrocumulonimbus super outbreak reveals potential for increasingly extreme stratospheric smoke events. npj Clim. Atmos. Sci. 4, 38 (2021).
Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).
Penman, T. D., Clarke, H., Gibson, R. K., Collins, L. & Nolan, R. H. in Australiaâs Megafires: Biodiversity Impacts and Lessons From 2019â2020 (eds Rumpff, L. et al.) 42â59 (CSIRO, 2023).
Ellis, T. M., Bowman, D. M., Jain, P., Flannigan, M. D. & Williamson, G. J. Global increase in wildfire risk due to climateâdriven declines in fuel moisture. Global Change Biol. 28, 1544â1559 (2022).
Senande-Rivera, M., Insua-Costa, D. & Miguez-Macho, G. Spatial and temporal expansion of global wildland fire activity in response to climate change. Nat. Commun. 13, 1208 (2022).
Cunningham, C. X., Williamson, G. J. & Bowman, D. M. J. S. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 8, 1420â1425 (2024).
Wildfire graphs. Canadian Interagency Forest Fire Centre https://ciffc.net/statistics (2023).
Doherty, T. S., Macdonald, K. J., Nimmo, D. G., Santos, J. L. & Geary, W. L. Shifting fire regimes cause continent-wide transformation of threatened species habitat. Proc. Natl Acad. Sci. USA 121, e2316417121 (2024).
Legge, S., Rumpff, L., Garnett, S. T. & Woinarski, J. C. Z. Loss of terrestrial biodiversity in Australia: magnitude, causation, and response. Science 381, 622â631 (2023).
Gallagher, R. V. et al. High fire frequency and the impact of the 2019â2020 megafires on Australian plant diversity. Divers. Distrib. 27, 1166â1179 (2021).
Geary, W. L. et al. Responding to the biodiversity impacts of a megafire: a case study from south-eastern Australiaâs Black Summer. Divers. Distrib. 28, 463â478 (2022).
Legge, S. et al. The conservation impacts of ecological disturbance: time-bound estimates of population loss and recovery for fauna affected by the 2019â2020 Australian megafires. Global Ecol. Biogeogr. 31, 2085â2104 (2022).
Driscoll, D. A. Biodiversity impacts of the 2019-20 Australian megafires. YouTube https://youtu.be/kCPjowmxH3Q (2024).
Steel, Z. L., Fogg, A. M., Burnett, R., Roberts, L. J. & Safford, H. D. When bigger isnât betterâimplications of large high-severity wildfire patches for avian diversity and community composition. Divers. Distrib. 28, 439â453 (2022).
Keith, D. A. et al. Fire-related threats and transformational change in Australian ecosystems. Global Ecol. Biogeogr. 31, 2070â2084 (2022).
Enright, N. J., Fontaine, J. B., Bowman, D., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes and demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Environ. 13, 265â272 (2015).
Haslem, A. et al. Time-since-fire and inter-fire interval influence hollow availability for fauna in a fire-prone system. Biol. Conserv. 152, 212â221 (2012).
Hale, S. et al. Evidence that post-fire recovery of small mammals occurs primarily via in situ survival. Divers. Distrib. 28, 404â416 (2022).
Lingua, E. et al. Post-fire restoration and deadwood management: microsite dynamics and their impact on natural regeneration. Forests 14, 1820 (2023).
Allen, A. G., Roehrs, Z. P., Seville, R. S. & Lanier, H. C. Competitive release during fire succession influences ecological turnover in a small mammal community. Ecology 103, e3733 (2022).
Queiroz, E. A. et al. Reduced predation by arthropods and higher herbivory in burned Amazonian forests. Biotropica 54, 1052â1060 (2022).
Stone, Z. L., Maron, M. & Tasker, E. Reduced fire frequency over three decades hastens loss of the grassy forest habitat of an endangered songbird. Biol. Conserv. 270, 109570 (2022).
von Takach, B. et al. Long-unburnt habitat is critical for the conservation of threatened vertebrates across Australia. Landscape Ecol. 37, 1469â1482 (2022).
Robinson, N. M., Leonard, S. W. J., Bennett, A. F. & Clarke, M. F. Refuges for birds in fire-prone landscapes: the influence of fire severity and fire history on the distribution of forest birds. For. Ecol. Manage. 318, 110â121 (2014).
Ramiadantsoa, T., Ratajczak, Z. & Turner, M. G. Regeneration strategies and forest resilience to changing fire regimes: insights from a Goldilocks model. Ecology 104, e4041 (2023).
van Mantgem, P. J. et al. Climatic stress increases forest fire severity across the western United States. Ecol. Lett. 16, 1151â1156 (2013).
Nolan, R. H. et al. Limits to post-fire vegetation recovery under climate change. Plant Cell Environ. 44, 3471â3489 (2021).
Connell, J., Hall, M. A., Nimmo, D. G., Watson, S. J. & Clarke, M. F. Fire, drought and flooding rains: the effect of climatic extremes on bird speciesâ responses to time since fire. Divers. Distrib. 28, 417â438 (2022).
Lindenmayer, D. B. & Ough, K. Salvage logging in the montane ash eucalypt forests of the Central Highlands of Victoria and its potential impacts on biodiversity. Conserv. Biol. 20, 1005â1015 (2006).
Foxcroft, L. C., Richardson, D. M., PyÅ¡ek, P. & Genovesi, P. in Plant Invasions in Protected Areas: Patterns, Problems and Challenges (eds Foxcroft, L. C. et al.) 621â639 (Springer Netherlands, 2013).
White, D. J. & Vesk, P. A. Fire and legacy effects of logging on understorey assemblages in wet-sclerophyll forests. Aust. J. Bot. 67, 341â357 (2019).
Janousek, W. M. & Dreitz, V. J. Testing Hustonâs dynamic equilibrium model along fire and forest productivity gradients using avian monitoring data. Divers. Distrib. 26, 1715â1726 (2020).
Mahony, M. et al. A trait-based analysis for predicting impact of wildfires on frogs. Aust. Zool. 42, 326â351 (2022).
Scheele, B. C. et al. Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians. Conserv. Biol. 28, 1195â1205 (2014).
González, T. M., González-Trujillo, J. D., Muñoz, A. & Armenteras, D. Effects of fire history on animal communities: a systematic review. Ecol. Process. 11, 11 (2022).
Santos, J. L. et al. Beyond inappropriate fire regimes: a synthesis of fire-driven declines of threatened mammals in Australia. Conserv. Lett. 15, e12905 (2022).
Chard, M. et al. Time since fire influences macropod occurrence in a fire-prone coastal ecosystem. Austral Ecol. 47, 507â518 (2022).
Santos, J. L. et al. A demographic framework for understanding fire-driven reptile declines in the âland of the lizardsâ. Global Ecol. Biogeogr. 31, 2105â2119 (2022).
Bieber, B. V. et al. Increasing prevalence of severe fires change the structure of arthropod communities: evidence from a meta-analysis. Funct. Ecol. 37, 2096â2109 (2023).
Plumanns-Pouton, E. S., Swan, M. H., Penman, T. D., Collins, L. & Kelly, L. T. Time since fire shapes plant immaturity risk across fire severity classes. Fire Ecol. 19, 25 (2023).
Nimmo, D. G., Carthey, A. J. R., Jolly, C. J. & Blumstein, D. T. Welcome to the Pyrocene: animal survival in the age of megafire. Global Change Biol. 27, 5684â5693 (2021).
Nyström, M. & Folke, C. Spatial resilience of coral reefs. Ecosystems 4, 406â417 (2001).
Mellin, C., Aaron MacNeil, M., Cheal, A. J., Emslie, M. J. & Julian Caley, M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629â637 (2016).
Collins, L. et al. Fuel reduction burning reduces wildfire severity during extreme fire events in south-eastern Australia. J. Environ. Manage. 343, 118171 (2023).
Penman, T. D. et al. Prescribed burning: how can it work to conserve the things we value? Int. J. Wildland Fire 20, 721â733 (2011).
Lindenmayer, D., Zylstra, P. & Yebra, M. Adaptive wildfire mitigation approaches. Science 377, 1163â1164 (2022).
Lindenmayer, D., Taylor, C., Bowd, E. & Zylstra, P. What did it used to look like? A case study from tall, wet mainland Mountain Ash forests prior to British invasion. Austral Ecol. 49, e13520 (2024).
Noss, R. F., Franklin, J. F., Baker, W. L., Schoennagel, T. & Moyle, P. B. Managing fire-prone forests in the western United States. Front. Ecol. Environ. 4, 481â487 (2006).
DellaSala, D. A., Baker, B. C., Hanson, C. T., Ruediger, L. & Baker, W. Have western USA fire suppression and megafire active management approaches become a contemporary Sisyphus? Biol. Conserv. 268, 109499 (2022).
Prober, S. M., Yuen, E., OâConnor, M. H. & Schultz, L. Ngadju kala: Australian Aboriginal fire knowledge in the Great Western Woodlands. Austral Ecol. 41, 716â732 (2016).
Hoffman, K. M. et al. Conservation of Earthâs biodiversity is embedded in Indigenous fire stewardship. Proc. Natl Acad. Sci. USA 118, 6 (2021).
Nimmo, D. G. et al. Predicting the century-long post-fire responses of reptiles. Global Ecol. Biogeogr. 21, 1062â1073 (2012).
Mahood, A. L., Koontz, M. J. & Balch, J. K. Fuel connectivity, burn severity, and seed bank survivorship drive ecosystem transformation in a semiarid shrubland. Ecology 104, e3968 (2023).
Miritis, V., Dickman, C. R., Nimmo, D. G. & Doherty, T. S. After the âBlack Summerâ fires: faunal responses to megafire depend on fire severity, proportional area burnt and vegetation type. J. Appl. Ecol. 61, 63â75 (2024).
Lindenmayer, D. B. et al. Testing hypotheses associated with bird responses to wildfire. Ecol. Appl. 18, 1967â1983 (2008).
Heard, G. W. et al. Drought, fire, and rainforest endemics: a case study of two threatened frogs impacted by Australiaâs âBlack Summerâ. Ecol. Evol. 13, e10069 (2023).
Marsh, J. R. et al. in Australiaâs Megafires (eds Rumpff, L. et al.) 141â153 (CSIRO, 2023).
Meinshausen, M. et al. Realization of Paris Agreement pledges may limit warming just below 2â°C. Nature 604, 304â309 (2022).
Linley, G. D. et al. What do you mean, âmegafireâ? Global Ecol. Biogeogr. 31, 1906â1922 (2022).
Ward, M. et al. Impact of 2019â2020 mega-fires on Australian fauna habitat. Nat. Ecol. Evolut. 4, 1321-+ (2020).
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1â48 (2010).
Viechtbauer, W. Calculate effect sizes and outcome measures. GitHub https://wviechtb.github.io/metafor/reference/escalc.html (2024).
Morris, S. B. & DeShon, R. P. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods 7, 105â125 (2002).
Hedges, L. V. Distribution theory for glassâs estimator of effect size and related estimators. J. Educ. Stat. 6, 107â128 (1981).
Eales, J. et al. What is the effect of prescribed burning in temperate and boreal forest on biodiversity, beyond pyrophilous and saproxylic species? A systematic review. Environ. Evid. 7, 19 (2018).
Takeshima, N. et al. Which is more generalizable, powerful and interpretable in meta-analyses, mean difference or standardized mean difference? BMC Med. Res. Method. 14, 30 (2014).
user603. Detecting outliers in count data, URL (version: 2020-08-28). Stack Exchange https://stats.stackexchange.com/q/56404 (2020).
Pebesma, E. & Bivand, R. Spatial Data Science: With Applications in R (Chapman and Hall/CRC, 2023).
Cuijpers, P., Weitz, E., Cristea, I. A. & Twisk, J. Pre-post effect sizes should be avoided in meta-analyses. Epidemiol. Psychiatr. Sci. 26, 364â368 (2017).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2023).
Pappalardo, P. et al. Comparing traditional and Bayesian approaches to ecological meta-analysis. Methods Ecol. Evol. 11, 1286â1295 (2020).
Pustejovsky, J. E. & Tipton, E. Meta-analysis with robust variance estimation: expanding the range of working models. Prev. Sci. 23, 425â438 (2022).
Cheung, M. W. L. A guide to conducting a meta-analysis with non-independent effect sizes. Neuropsychol. Rev. 29, 387â396 (2019).
Muff, S., Nilsen, E. B., OâHara, R. B. & Nater, C. R. Rewriting results sections in the language of evidence. Trends Ecol. Evol. 37, 203â210 (2022).
Gibson, R. K. & Hislop, S. Signs of resilience in resprouting Eucalyptus forests, but areas of concern: 1âyear of post-fire recovery from Australiaâs Black Summer of 2019â2020. Int. J. Wildland Fire 31, 545â557 (2022).
NSW Department of Climate Change, Energy, the Environment and Water. Fire Extent and Severity Mapping (FESM). NSW Government https://datasets.seed.nsw.gov.au/dataset/fire-extent-and-severity-mapping-fesm (2023).
Department of Environment, Land, Water and Planning, Victorian Government. Fire severity map of the major fires in Gippsland and north east Victoria in 2019/20 (version 1.0). State Government of Victoria https://discover.data.vic.gov.au/dataset/fire-severity-map-of-the-major-fires-in-gippsland-and-north-east-victoria-in-2019-20-version-1- (2020).
Gallagher, R. V. et al. An integrated approach to assessing abiotic and biotic threats to post-fire plant species recovery: lessons from the 2019â2020 Australian fire season. Global Ecol. Biogeogr. 31, 2056â2069 (2022).
McKee, T. B., Doesken, N. J. & Kleist, J. R. The relationship of drought frequency and duration to time scales. In Proc. 8th Conference on Applied Climatology 1993 179â183 (American Meteorological Society, 1993).
ABARES. The Australian Land Use and Management Classification Version 8 (Australian Bureau of Agricultural and Resource Economics and Sciences, 2016).
Keith, D. A. & Simpson, C. C. Vegetation formations and classes of NSW (version 3.03â200m Raster). NSW Government https://datasets.seed.nsw.gov.au/dataset/vegetation-classes-of-nsw-version-3-03-200m-raster-david-a-keith-and-christopher-c-simpc0917 (2017).