Sun, P. Z. et al. Limits on gas impermeability of graphene. Nature 7798, 229–232 (2020).
Lozada-Hidalgo, M. et al. Sieving hydrogen isotopes through two-dimensional crystals. Science 6268, 68–70 (2016).
Hauser, A. W. & Schwerdtfeger, P. Nanoporous graphene membranes for efficient 3He/4He separation. J. Phys. Chem. Lett. 2, 209–213 (2012).
Owais, C., James, A., John, C., Dhali, R. & Swathi, R. S. Selective permeation through one-atom-thick nanoporous carbon membranes: theory reveals excellent design strategies! J. Phys. Chem. B 20, 5127–5146 (2018).
Krishnakumar, R. & Swathi, R. S. Tunable Azacrown-embedded graphene nanomeshes for ion sensing and separation. ACS Appl. Mater. Interfaces 1, 999–1010 (2017).
Celebi, K. et al. Ultimate permeation across atomically thin porous graphene. Science 6181, 289–292 (2014).
Jiang, D., Cooper, V. R. & Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 12, 4019–4024 (2009).
Sun, P. Z. et al. Exponentially selective molecular sieving through angstrom pores. Nat. Commun. 1, 7170 (2021).
Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).
Ghosh, M., Jorissen, K. F. A., Wood, J. A. & Lammertink, R. G. H. Ion transport through perforated graphene. J. Phys. Chem. Lett. 21, 6339–6344 (2018).
O’Hern, S. C. et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 3, 1234–1241 (2014).
Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 5, 459–464 (2015).
Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 7, 3602–3608 (2012).
Fu, Y. et al. Dehydration-determined ion selectivity of graphene subnanopores. ACS Appl. Mater. Interfaces 21, 24281–24288 (2020).
Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 1, 11408 (2016).
Sint, K., Wang, B. & Král, P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 49, 16448–16449 (2008).
Qi, H. et al. Synergic effects of the nanopore size and surface charge on the ion selectivity of graphene membranes. J. Phys. Chem. C 1, 507–514 (2021).
Konatham, D., Yu, J., Ho, T. A. & Striolo, A. Simulation insights for graphene-based water desalination membranes. Langmuir 29, 11884–11897 (2013).
Gu, Y., Qiu, Z. & Müllen, K. Nanographenes and graphene nanoribbons as multitalents of present and future materials science. J. Am. Chem. Soc. 144, 11499–11524 (2022).
Beser, U. et al. A C216-nanographene molecule with defined cavity as extended coronoid. J. Am. Chem. Soc. 138, 4322–4325 (2016).
Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 2009, 6919–6921 (2009).
Zhao, X.-J. et al. Molecular defect-containing bilayer graphene exhibiting brightened luminescence. Sci. Adv. 6, eaay8541 (2020).
Sarker, M. et al. Porous nanographenes, graphene nanoribbons, and nanoporous graphene selectively synthesized from the same molecular precursor. J. Am. Chem. Soc. 146, 14453–14467 (2024).
Jentzsch, A. V., Hennig, A., Mareda, J. & Matile, S. Synthetic ion transporters that work with anion−π interactions, halogen bonds, and anion–macrodipole interactions. Acc. Chem. Res. 46, 2791–2800 (2013).
Frontera, A. Encapsulation of anions: macrocyclic receptors based on metal coordination and anion–π interactions. Coord. Chem. Rev. 257, 1716–1727 (2013).
Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).
Zhao, X., Zhao-Karger, Z., Fichtner, M. & Shen, X. Halide-based materials and chemistry for rechargeable batteries. Angew. Chem. Int. Ed. 59, 5902–5949 (2020).
Liu, Q. et al. Rechargeable anion-shuttle batteries for low-cost energy storage. Chem 7, 1993–2021 (2021).
Niyas, M. A., Shoyama, K. & Würthner, F. C64 nanographene tetraimide—a receptor for phthalocyanines with subnanomolar affinity. Angew. Chem. Int. Ed. 25, e202302032 (2023).
Mahl, M., Niyas, M. A., Shoyama, K. & Würthner, F. Multilayer stacks of polycyclic aromatic hydrocarbons. Nat. Chem. 14, 457–462 (2022).
Liu, Y., Zhao, W., Chen, C.-H. & Flood, A. H. Chloride capture using a C-H hydrogen-bonding cage. Science 6449, 159–161 (2019).
Shoyama, K. & Würthner, F. Synthesis of a carbon nanocone by cascade annulation. J. Am. Chem. Soc. 33, 13008–13012 (2019).
Smithrud, D. B. & Diederich, F. Strength of molecular complexation of apolar solutes in water and in organic solvents is predictable by linear free energy relationships: a general model for solvation effects on apolar binding. J. Am. Chem. Soc. 112, 339–343 (1990).
Horn, P. R., Mao, Y. & Head-Gordon, M. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 33, 23067–23079 (2016).
Li, Y. & Flood, A. H. Pure C–H hydrogen bonding to chloride ions: a preorganized and rigid macrocyclic receptor. Angew. Chem. Int. Ed. 14, 2649–2652 (2008).
Lee, S., Chen, C.-H. & Flood, A. H. A pentagonal cyanostar macrocycle with cyanostilbene CH donors binds anions and forms dialkylphosphate [3]rotaxanes. Nat. Chem. 8, 704–710 (2013).
Wu, X. et al. Tetraurea macrocycles: aggregation-driven binding of chloride in aqueous solutions. Chem 5, 1210–1222 (2019).
Perrin, C. L. & Dwyer, T. J. Application of two-dimensional NMR to kinetics of chemical exchange. Chem. Rev. 6, 935–967 (1990).
Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).
Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).
Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB-An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 3, 1652–1671 (2019).
Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A 1, 3–8 (2015).
Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 1, 112–122 (2008).
Guzei, I. A. An idealized molecular geometry library for refinement of poorly behaved molecular fragments with constraints. J. Appl. Crystallogr. 47, 806–809 (2014).
Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 1, 7–13 (2003).
Wagner, R. & Berger, S. Gradient-selected NOESY—a fourfold reduction of the measurement time for the NOESY experiment. J. Magn. Reson., Ser. A 123, 119–121 (1996).
Pavlović, R. Z. et al. From selection to instruction and back: competing conformational selection and induced fit pathways in abiotic hosts. Angew. Chem. Int. Ed. 36, 19942–19948 (2021).
Zolnai, Z., Juranić, N., Vikić-Topić, D. & Macura, S. Quantitative determination of magnetization exchange rate constants from a series of two-dimensional exchange NMR spectra. J. Chem. Inf. Comput. Sci. 3, 611–621 (2000).
Lu, J., Ma, D., Hu, J., Tang, W. & Zhu, D. Nuclear magnetic resonance spectroscopic studies of pyridine methyl derivatives binding to cytochrome c. J. Chem. Soc., Dalton Trans. 13, 2267–2274 (1998).
Miklitz, M. & Jelfs, K. E. pywindow: automated structural analysis of molecular pores. J. Chem. Inf. Model. 12, 2387–2391 (2018).
Maglic, J. B. & Lavendomme, R. MoloVol: an easy-to-use program for analyzing cavities, volumes and surface areas of chemical structures. J. Appl. Crystallogr. 55, 1033–1044 (2022).
Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).
Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).