Thursday, August 21, 2025
No menu items!
HomeNatureAtomic dynamics of gas-dependent oxide reducibility

Atomic dynamics of gas-dependent oxide reducibility

  • Manzoor, U., Mujica Roncery, L., Raabe, D. & Souza Filho, I. R. Sustainable nickel enabled by hydrogen-based reduction. Nature 641, 365–373 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Spreitzer, D. & Schenk, J. Reduction of iron oxides with hydrogen—a review. Steel Res. Int. 90, 1900108 (2019).


    Google Scholar
     

  • Chee, S. W., Lunkenbein, T., Schlögl, R. & Roldán Cuenya, B. Operando electron microscopy of catalysts: the missing cornerstone in heterogeneous catalysis research? Chem. Rev. 123, 13374–13418 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chenna, S., Banerjee, R. & Crozier, P. A. Atomic-scale observation of the Ni activation process for partial oxidation of methane using in situ environmental TEM. ChemCatChem 3, 1051–1059 (2011).

    CAS 

    Google Scholar
     

  • Zeng, L., Cheng, Z., Fan, J. A., Fan, L. S. & Gong, J. Metal oxide redox chemistry for chemical looping processes. Nat. Rev. Chem. 2, 349–364 (2018).

    CAS 

    Google Scholar
     

  • Wei, S., Ma, Y. & Raabe, D. One step from oxides to sustainable bulk alloys. Nature 633, 816–822 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J. Y., Rodriguez, J. A., Hanson, J. C., Frenkel, A. I. & Lee, P. L. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 125, 10684–10692 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X., Hanson, J. C., Frenkel, A. I., Kim, J.-Y. & Rodriguez, J. A. Time-resolved studies for the mechanism of reduction of copper oxides with carbon monoxide: complex behavior of lattice oxygen and the formation of suboxides. J. Phys. Chem. B 108, 13667–13673 (2004).

    CAS 

    Google Scholar
     

  • Rodriguez, J. A., Hanson, J. C., Frenkel, A. I., Kim, J. Y. & Pérez, M. Experimental and theoretical studies on the reaction of H2 with NiO: Role of O vacancies and mechanism for oxide reduction. J. Am. Chem. Soc. 124, 346–354 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • Luo, L. et al. Atomic origins of water-vapour-promoted alloy oxidation. Nat. Mater. 17, 514–518 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Sun, X. et al. Dislocation-induced stop-and-go kinetics of interfacial transformations. Nature 607, 708–713 (2022).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Zou, L., Li, J., Zakharov, D. N., Stach, E. A. & Zhou, G. In situ atomic-scale imaging of the metal/oxide interfacial transformation. Nat. Commun. 8, 307 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Yuan, W. et al. Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 367, 428–430 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Lagrow, A. P., Ward, M. R., Lloyd, D. C., Gai, P. L. & Boyes, E. D. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 139, 179–185 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Atomic origin of the autocatalytic reduction of monoclinic CuO in a hydrogen atmosphere. J. Phys. Chem. Lett. 12, 9547–9556 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Frey, H., Beck, A., Huang, X., van Bokhoven, J. A. & Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 4–8 (2022).


    Google Scholar
     

  • Rukini, A., Rhamdhani, M. A., Brooks, G. A. & Van den Bulck, A. Metals production and metal oxides reduction using hydrogen: a review. J. Sustain. Metall. 8, 1–24 (2022).


    Google Scholar
     

  • Chen, J. & Hayes, P. C. Mechanisms and kinetics of reduction of solid NiO in CO/CO2 and CO/Ar gas mixtures. Metall. Mater. Trans. B 50, 2623–2635 (2019).

    CAS 

    Google Scholar
     

  • Krasuk, J. H. & Smith, J. M. Kinetics of reduction of nickel oxide with CO. AIChE J. 18, 506–512 (1972).

    CAS 
    ADS 

    Google Scholar
     

  • Antola, O., Holappa, L. & Paschen, P. Nickel ore reduction by hydrogen and carbon monoxide containing gases. Miner. Process. Extr. Metall. Rev. 15, 169–179 (1995).

    CAS 

    Google Scholar
     

  • Scholz, J. J. & Langell, M. A. Kinetic analysis of surface reduction in transition metal oxide single crystals. Surf. Sci. 164, 543–557 (1985).

    CAS 
    ADS 

    Google Scholar
     

  • Wang, J. et al. Effect of the chemical states of copper on methanol decomposition and oxidation. J. Phys. Chem. C 128, 4559–4572 (2024).

    CAS 

    Google Scholar
     

  • Swallow, J. E. N. et al. Revealing the role of CO during CO2 hydrogenation on Cu surfaces with in situ soft X-ray spectroscopy. J. Am. Chem. Soc. 145, 6730–6740 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peck, M. A. & Langell, M. A. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chem. Mater. 24, 4483–4490 (2012).

    CAS 

    Google Scholar
     

  • Furstenau, R. P., McDougall, G. & Langell, M. A. Initial stages of hydrogen reduction of NiO(100). Surf. Sci. 150, 55–79 (1985).

    CAS 
    ADS 

    Google Scholar
     

  • Norby, T. Protonic defects in oxides and their possible role in high temperature oxidation. J. Phys. IV 3, C9-99–C9-106 (1993).


    Google Scholar
     

  • Li, S., Ding, W., Meitzner, G. D. & Iglesia, E. Spectroscopic and transient kinetic studies of site requirements in iron-catalyzed Fischer–Tropsch synthesis. J. Phys. Chem. B 106, 85–91 (2002).

    CAS 

    Google Scholar
     

  • Janbroers, S., Crozier, P. A., Zandbergen, H. W. & Kooyman, P. J. A model study on the carburization process of iron-based Fischer–Tropsch catalysts using in situ TEM–EELS. Appl. Catal. B 102, 521–527 (2011).

    CAS 

    Google Scholar
     

  • Andersson, D. A., Simak, S. I., Skorodumova, N. V., Abrikosov, I. A. & Johansson, B. Optimization of ionic conductivity in doped ceria. Proc. Natl Acad. Sci. USA 103, 3518–3521 (2006).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • Matsubu, J. C. et al. Adsorbate-mediated strong metal-support interactions in oxide-supported Rh catalysts. Nat. Chem. 9, 120–127 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Sun, X. et al. Atomic‐scale mechanism of unidirectional oxide growth. Adv. Funct. Mater. 30, 1906504 (2020).

    CAS 

    Google Scholar
     

  • Boyes, E. D. & Gai, P. L. Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219–232 (1997).

    CAS 

    Google Scholar
     

  • Gai, P. L. et al. Atomic-resolution environmental transmission electron microscopy for probing gas-solid reactions in heterogeneous catalysis. MRS Bull. 32, 1044–1050 (2007).

    CAS 

    Google Scholar
     

  • Gai, P. L., Lari, L., Ward, M. R. & Boyes, E. D. Visualisation of single atom dynamics and their role in nanocatalysts under controlled reaction environments. Chem. Phys. Lett. 592, 355–359 (2014).

    CAS 
    ADS 

    Google Scholar
     

  • LaGrow, A. P., Lloyd, D. C., Gai, P. L. & Boyes, E. D. In situ scanning transmission electron microscopy of Ni nanoparticle redispersion via the reduction of hollow NiO. Chem. Mater. 30, 197–203 (2018).

    CAS 

    Google Scholar
     

  • Helveg, S. et al. Atomic-scale imaging of carbon nanofibre growth. Nature 427, 426–429 (2004).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Yoshida, H. et al. Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317–319 (2012).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Xie, D. G. et al. In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nat. Mater. 14, 899–903 (2015).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Leapman, R. D., Grunes, L. A. & Fejes, P. L. Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons with theory. Phys. Rev. B 26, 614–635 (1982).

    CAS 
    ADS 

    Google Scholar
     

  • Sparrow, T. G., Williams, B. G., Rao, C. N. R. & Thomas, J. M. L3/L2 white-line intensity ratios in the electron energy-loss spectra of 3d transition-metal oxides. Chem. Phys. Lett. 108, 547–550 (1984).

    CAS 
    ADS 

    Google Scholar
     

  • Grosvenor, A. P., Biesinger, M. C., Smart, R. S. C. & McIntyre, N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 600, 1771–1779 (2006).

    CAS 
    ADS 

    Google Scholar
     

  • Carley, A. F., Jackson, S. D., O’Shea, J. N. & Roberts, M. W. The formation and characterisation of Ni3+—an X-ray photoelectron spectroscopic investigation of potassium-doped Ni (110)–O. Surf. Sci. 440, L868–L874 (1999).

    CAS 
    ADS 

    Google Scholar
     

  • McIntyre, N. S. & Zetaruk, D. G. X-ray photoelectron spectroscopic studies of iron oxides. Anal. Chem. 49, 1521–1529 (1977).

    CAS 

    Google Scholar
     

  • Zhao, X. et al. Multiple metal-nitrogen bonds synergistically boosting the activity and durability of high-entropy alloy electrocatalysts. J. Am. Chem. Soc. 146, 3010–3022 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991).

    CAS 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüler, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS 
    ADS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    CAS 
    ADS 

    Google Scholar
     

  • Xu, Q., Cheah, S. & Zhao, Y. Initial reduction of the NiO(100) surface in hydrogen. J. Chem. Phys. 139, 024704 (2013).

    PubMed 
    ADS 

    Google Scholar
     

  • Ferrari, A. M., Pisani, C., Cinquini, F., Giordano, L. & Pacchioni, G. Cationic and anionic vacancies on the NiO(100) surface: DFT + U and hybrid functional density functional theory calculations. J. Chem. Phys. 127, 174711 (2007).

    PubMed 
    ADS 

    Google Scholar
     

  • Jeon, J., Yu, B. D. & Hyun, S. Adsorption properties of transition metal atoms on strongly correlated NiO(001) surfaces with surface oxygen vacancies. Curr. Appl. Phys. 15, 679–682 (2015).

    ADS 

    Google Scholar
     

  • Silvi, B. & Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994).

    CAS 
    ADS 

    Google Scholar
     

  • Jónsson, H., Mills, G. & Jacobsen, K. W. in Classical and Quantum Dynamics in Condensed Phase Simulations (eds Berne, B. J. et al.) 385–404 (World Scientific, 1998).

  • He, Y., Dulub, O., Cheng, H., Selloni, A. & Diebold, U. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). Phys. Rev. Lett. 102, 106105 (2009).

    PubMed 
    ADS 

    Google Scholar
     

  • Yu, J., Rosso, K. M. & Bruemmer, S. M. Charge and ion transport in NiO and aspects of Ni oxidation from first principles. J. Phys. Chem. C 116, 1948–1954 (2012).

    CAS 

    Google Scholar
     

  • Wagner Jr, J. B. in Defects and Transport in Oxides (eds Seltzer, M. S. & Jaffee, R. I.) 283–301 (Springer, 1974).

  • Malyshev, O. B. & Middleman, K. J. In situ ultrahigh vacuum residual gas analyzer ‘calibration’. J. Vac. Sci. Technol. A 26, 1474–1479 (2008).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments