Thursday, February 5, 2026
No menu items!
HomeNatureAtmospheric H2 variability over the past 1,100 years

Atmospheric H2 variability over the past 1,100 years

  • Warwick, N., Griffiths, P., Keeble, J., Archibald, A., & Pyle, J. Atmospheric implications of increased Hydrogen use. GOV.UK https://www.gov.uk/government/publications/atmospheric-implications-of-increased-hydrogen-use (2022).

  • Derwent, R. G. et al. Global modelling studies of hydrogen and its isotopomers using STOCHEM-CRI: likely radiative forcing consequences of a future hydrogen economy. Int. J. Hydrog. Energy 45, 9211–9221 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Paulot, F. et al. Global modeling of hydrogen using GFDL-AM4.1: sensitivity of soil removal and radiative forcing. Int. J. Hydrog. Energy 46, 13446–13460 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sand, M. et al. A multi-model assessment of the Global Warming Potential of hydrogen. Commun. Earth Environ. 4, 203 (2023).

    Article 
    ADS 

    Google Scholar
     

  • Prather, M. J. An environmental experiment with H2? Science 302, 581–582 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Warwick, N. J. et al. Atmospheric composition and climate impacts of a future hydrogen economy. Atmos. Chem. Phys. 23, 13451–13467 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ehhalt, D. H. & Rohrer, F. The tropospheric cycle of H2: a critical review. Tellus B Chem. Phys. Meteorol. 61, 500–535 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Patterson, J. D. & Saltzman, E. S. Diffusivity and solubility of H2 in ice Ih: implications for the behavior of H2 in polar ice. J. Geophys. Res. Atmos. 126, e2020JD033840 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Haan, D. Teneurs en monoxyde de carbone de l’air contenu dans la glace de l’Antarctique et du Groenland. Thesis, Université Joseph-Fourier (1996).

  • Solomon, S. et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327, 1219–1223 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Novelli, P. C. et al. Molecular hydrogen in the troposphere: global distribution and budget. J. Geophys. Res. Atmos. 104, 30427–30444 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Paulot, F., Pétron, G., Crotwell, A. M. & Bertagni, M. B. Reanalysis of NOAA H2 observations: implications for the H2 budget. Atmos. Chem. Phys. 24, 4217–4229 (2024).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zgonnik, V. The occurrence and geoscience of natural hydrogen: a comprehensive review. Earth-Sci. Rev. 203, 103140 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Esquivel-Elizondo, S. et al. Wide range in estimates of hydrogen emissions from infrastructure. Front. Energy Res. 11, 1207208 (2023).

    Article 

    Google Scholar
     

  • Derwent, R. G., Simmonds, P. G., O’Doherty, S., Manning, A. J. & Spain, T. G. High-frequency, continuous hydrogen observations at Mace Head, Ireland from 1994 to 2022: baselines, pollution events and ‘missing’ sources. Atmos. Environ. 312, 120029 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Pétron, G. et al. Atmospheric H2 observations from the NOAA Cooperative Global Air Sampling Network. Atmos. Meas. Tech. 17, 4803–4823 (2024).

    Article 

    Google Scholar
     

  • Prinn, R. G. et al. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE). Earth Syst. Sci. Data 10, 985–1018 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Patterson, J. D. et al. Reconstructing atmospheric H2 over the past century from bi-polar firn air records. Clim. Past 19, 2535–2550 (2023).

    Article 

    Google Scholar
     

  • Patterson, J. D., Saltzman, E. S. & Paulot, F. Emerging constraints on the H2 budget from polar firn air reconstructions. J. Geophys. Res. Atmos. 130, e2025JD043662 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mitchell, L., Brook, E., Lee, J. E., Buizert, C. & Sowers, T. Constraints on the late Holocene anthropogenic contribution to the atmospheric methane budget. Science 33422, 964–966 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Rhodes, R. H. et al. Continuous methane measurements from a late Holocene Greenland ice core: atmospheric and in-situ signals. Earth Planet. Sci. Lett. 368, 9–19 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly. Science 326, 1256–1260 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mann, M. E., Bradley, R. S. & Hughes, M. K. Northern hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys. Res. Lett. 26, 759–762 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Meinshausen, M. et al. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev. 10, 2057–2116 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nicewonger, M. R., Aydin, M., Prather, M. J. & Saltzman, E. S. Extracting a history of global fire emissions for the past millennium from ice core records of acetylene, ethane, and methane. J. Geophys. Res. Atmos. 125, e2020JD032932 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nicewonger, M. R., Aydin, M., Prather, M. J. & Saltzman, E. S. Reconstruction of paleofire emissions over the past millennium from measurements of ice core acetylene. Geophys. Res. Lett. 47, e2019GL085101 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Faïn, X. et al. Southern Hemisphere atmospheric history of carbon monoxide over the late Holocene reconstructed from multiple Antarctic ice archives. Clim. Past 19, 2287–2311 (2023).

    Article 

    Google Scholar
     

  • Ferretti, D. F. et al. Unexpected changes to the global methane budget over the past 2000 years. Science 309, 1714–1717 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mischler, J. A. et al. Carbon and hydrogen isotopic composition of methane over the last 1000 years. Glob. Biogeochem. Cycles 23, GB4024 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Hantson, S., Knorr, W., Schurgers, G., Pugh, T. A. M. & Arneth, A. Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use. Atmos. Environ. 155, 35–45 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Do, N. T. N. et al. Historical trends and controlling factors of isoprene emissions in CMIP6 Earth system models. Geosci. Model Dev. 18, 2079–2109 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Acosta Navarro, J. C. et al. Global emissions of terpenoid VOCs from terrestrial vegetation in the last millennium. J. Geophys. Res. Atmos. 119, 6867–6885 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brown, M. A. J., Warwick, N. J. & Archibald, A. T. Multi-model assessment of future hydrogen soil deposition and lifetime using CMIP6 data. Geophys. Res. Lett. 52, e2024GL113653 (2025).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bertagni, M. B., Paulot, F. & Porporato, A. Moisture fluctuations modulate abiotic and biotic limitations of H2 soil uptake. Glob. Biogeochem. Cycles 35, e2021GB006987 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 3–32 (Cambridge Univ. Press, 2021).

  • Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J. & Werner, J. P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550–554 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Petron, G. et al. Atmospheric hydrogen dry air mole fractions from the NOAA GML Global Greenhouse Gas Reference Network, Carbon Cycle Cooperative Global Air Sampling Network: 2009 – present, version: 2025-09-30. NOAA https://doi.org/10.15138/WP0W-EZ08 (2025).

  • Saltzman, E. S., Miranda, M. H., Patterson, J. D. & Aydin, M. A system for analysis of H2 and Ne in polar ice core samples. Atmos. Meas. Tech. 18, 7865–7873 (2025).

  • Riddell-Young, B. et al. Atmospheric methane variability through the Last Glacial Maximum and deglaciation mainly controlled by tropical sources. Nat. Geosci. 16, 1174–1180 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Craig, H., Horibe, Y. & Sowers, T. Gravitational separation of gases and isotopes in polar ice caps. Science 242, 1675–1678 (1988).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Severinghaus, J. P. & Battle, M. O. Fractionation of gases in polar ice during bubble close-off: new constraints from firn air Ne, Kr and Xe observations. Earth Planet. Sci. Lett. 244, 474–500 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Harris Stuart, R. et al. On the relationship between δO2/N2 variability and ice sheet surface conditions in Antarctica. Cryosphere 18, 3741–3763 (2024).

    Article 
    ADS 

    Google Scholar
     

  • Oyabu, I. et al. Fractionation of O2/N2 and Ar/N2 in the Antarctic ice sheet during bubble formation and bubble–clathrate hydrate transition from precise gas measurements of the Dome Fuji ice core. Cryosphere 15, 5529–5555 (2021).

    Article 
    ADS 

    Google Scholar
     

  • Suwa, M. & Bender, M. L. O2/N2 ratios of occluded air in the GISP2 ice core. J. Geophys. Res. Atmos. 113, D11119 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Bender, M. L. Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth Planet. Sci. Lett. 204, 275–289 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gluckauf, E. A micro-analysis of the helium and neon contents of air. Proc. R. Soc. A Math. Phys. Sci. 62, 98–119 (1944).


    Google Scholar
     

  • Neftel, A., Oeschger, H., Schwander, J. & Stauffer, B. Carbon dioxide concentration in bubbles of natural cold ice. J. Phys. Chem. 87, 4116–4120 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Paulot, F. fabienpaulot/H2_firn_air_box_model: v1.0.0. Zenodo https://doi.org/10.5281/zenodo.15359713 (2025).

  • Horowitz, L. W. et al. The GFDL global atmospheric chemistry-climate model AM4.1: model description and simulation characteristics. J. Adv. Model. Earth Syst. 12, e2019MS002032 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Guenther, A. B. et al. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5, 1471–1492 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • O’Rourke, P. et al. CEDS v_2021_04_21 gridded emissions data. Pacific Northwest National Laboratory https://doi.org/10.25584/PNNLDataHub/1779095 (2021).

  • van Marle, M. J. E. et al. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geosci. Model Dev. 10, 3329–3357 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Akagi, S. K. et al. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 11, 4039–4072 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Andreae, M. O. Emission of trace gases and aerosols from biomass burning – an updated assessment. Atmos. Chem. Phys. 19, 8523–8546 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, P. et al. Improved estimates of preindustrial biomass burning reduce the magnitude of aerosol climate forcing in the Southern Hemisphere. Sci. Adv. 7, eabc1379 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pfeiffer, M., Spessa, A. & Kaplan, J. O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1.0). Geosci. Model Dev. 6, 643–685 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Zhang, B. et al. Improved biomass burning emissions from 1750 to 2010 using ice core records and inverse modeling. Nat. Commun. 15, 3651 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strawson, I. et al. Historical Southern Hemisphere biomass burning variability inferred from ice core carbon monoxide records. Proc. Natl Acad. Sci. 121, e2402868121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicewonger, M. R., Aydin, M., Prather, M. J. & Saltzman, E. S. Large changes in biomass burning over the last millennium inferred from paleoatmospheric ethane in polar ice cores. Proc. Natl Acad. Sci. 115, 12413–12418 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sapart, C. J. et al. Natural and anthropogenic variations in methane sources during the past two millennia. Nature 490, 85–88 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Konecky, B. L. et al. Globally coherent water cycle response to temperature change during the past two millennia. Nat. Geosci. 16, 997–1004 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bader, J. et al. Global temperature modes shed light on the Holocene temperature conundrum. Nat. Commun. 11, 4726 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ehhalt, D. H. & Rohrer, F. Deposition velocity of H2: a new algorithm for its dependence on soil moisture and temperature. Tellus B Chem. Phys. Meteorol. 65, 19904 (2013).

    Article 
    ADS 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments