Sunday, April 20, 2025
No menu items!
HomeNatureAntiferromagnetic quantum anomalous Hall effect under spin flips and flops

Antiferromagnetic quantum anomalous Hall effect under spin flips and flops

  • Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, N. et al. Quantum-metric-induced nonlinear transport in a topological antiferromagnet. Nature 621, 487–492 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, A. et al. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science 381, 181–186 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article 

    Google Scholar
     

  • He, Q. L., Hughes, T. L., Armitage, N. P., Tokura, Y. & Wang, K. L. Topological spintronics and magnetoelectronics. Nat. Mater. 21, 15–23 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. 13, 031037 (2023).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, T. et al. Large quantum anomalous Hall effect in spin-orbit proximitized rhombohedral graphene. Science 384, 647–651 (2024).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ge, J. et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl Sci. Rev. 7, 1280–1287 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ying, Z. et al. Experimental evidence for dissipationless transport of the chiral edge state of the high-field Chern insulator in MnBi2Te4 nanodevices. Phys. Rev. B 105, 085412 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Cai, J. et al. Electric control of a canted-antiferromagnetic Chern insulator. Nat. Commun. 13, 1668 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bai, Y. et al. Quantized anomalous Hall resistivity achieved in molecular beam epitaxy-grown MnBi2Te4 thin films. Natl Sci. Rev. 11, nwad189 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gao, A. et al. Layer Hall effect in a 2D topological axion antiferromagnet. Nature 595, 521–525 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, R.-X., Wu, F. & Das Sarma, S. Möbius Insulator and Higher-Order Topology in MnBi2nTe3n+1. Phys. Rev. Lett. 124, 136407 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lei, C., Heinonen, O., MacDonald, A. H. & McQueeney, R. J. Metamagnetism of few-layer topological antiferromagnets. Phys. Rev. Mater. 5, 064201 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Tunable interlayer magnetism and band topology in van der Waals heterostructures of MnBi2Te4-family materials. Phys. Rev. B 102, 081107 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sun, H.-P. et al. Analytical solution for the surface states of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 102, 241406 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yang, S. et al. Odd-even layer-number effect and layer-dependent magnetic phase diagrams in MnBi2Te4. Phys. Rev. 11, 011003 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sass, P. M., Kim, J., Vanderbilt, D., Yan, J. & Wu, W. Robust A-type order and spin-flop transition on the surface of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Lett. 125, 037201 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ovchinnikov, D. et al. Intertwined topological and magnetic orders in atomically thin Chern insulator MnBi2Te4. Nano Lett. 21, 2544–2550 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Garnica, M. et al. Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001). npj Quantum Mater. 7, 7 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Tan, H. & Yan, B. Distinct magnetic gaps between antiferromagnetic and ferromagnetic orders driven by surface defects in the topological magnet MnBi2Te4. Phys. Rev. Lett. 130, 126702 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lai, Y., Ke, L., Yan, J., McDonald, R. D. & McQueeney, R. J. Defect-driven ferrimagnetism and hidden magnetization in MnBi2Te4. Phys. Rev. B 103, 184429 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Du, M.-H., Yan, J., Cooper, V. R. & Eisenbach, M. Tuning Fermi levels in intrinsic antiferromagnetic topological insulators MnBi2Te4 and MnBi4Te7 by defect engineering and chemical doping. Adv. Funct. Mater. 31, 2006516 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hou, F. et al. Te-vacancy-induced surface collapse and reconstruction in antiferromagnetic topological insulator MnBi2Te4. ACS Nano 14, 11262–11272 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, Z., Du, M.-H., Yan, J. & Wu, W. Native defects in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Mater. 4, 121202 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zeugner, A. et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater. 31, 2795–2806 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. Antiferromagnetic topological insulator MnBi2Te4: synthesis and magnetic properties. Phys. Chem. Chem. Phys. 22, 556–563 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Fabrication-induced even-odd discrepancy of magnetotransport in few-layer MnBi2Te4. Nat. Commun. 15, 3399 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Z. et al. Controlled large non-reciprocal charge transport in an intrinsic magnetic topological insulator MnBi2Te4. Nat. Commun. 13, 6191 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Gate-tunable intrinsic anomalous Hall effect in epitaxial MnBi2Te4 films. Nano Lett. 24, 16–25 (2024).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Reentrant quantum anomalous Hall effect in molecular beam epitaxy-grown MnBi2Te4 thin films. Preprint at arxiv.org/abs/2401.11450 (2024).

  • Wang, Y. et al. Towards the quantized anomalous Hall effect in AlOx-capped MnBi2Te4. Nat. Commun. 16, 1727 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dieny, B. & Chshiev, M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 89, 025008 (2017).

    Article 
    ADS 
    MathSciNet 

    Google Scholar
     

  • Monso, S. et al. Crossover from in-plane to perpendicular anisotropy in Pt/CoFe/AlOx sandwiches as a function of Al oxidation: a very accurate control of the oxidation of tunnel barriers. Appl. Phys. Lett. 80, 4157–4159 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rodmacq, B., Auffret, S., Dieny, B., Monso, S. & Boyer, P. Crossovers from in-plane to perpendicular anisotropy in magnetic tunnel junctions as a function of the barrier degree of oxidation. J. Appl. Phys. 93, 7513–7515 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chang, C.-Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Mills, D. L. Surface spin-flop state in a simple antiferromagnet. Phys. Rev. Lett. 20, 18–21 (1968).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bac, S.-K. et al. Topological response of the anomalous Hall effect in MnBi2Te4 due to magnetic canting. npj Quantum Mater. 7, 46 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chong, S. K. et al. Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4. Nat. Commun. 15, 2881 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bartram, F. M. et al. Real-time observation of magnetization and magnon dynamics in a two-dimensional topological antiferromagnet MnBi2Te4. Sci. Bull. 68, 2734–2742 (2023).

    Article 

    Google Scholar
     

  • Liu, C. et al. Magnetic-field-induced robust zero Hall plateau state in MnBi2Te4 Chern insulator. Nat. Commun. 12, 4647 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Luan, J. et al. Controlling the zero Hall plateau in a quantum anomalous Hall insulator by in-plane magnetic field. Phys. Rev. Lett. 130, 186201 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Coey, J. M. D. Magnetism and Magnetic Materials (Cambridge Univ. Press, 2010).

  • Chikazumi, S. & Graham, C. D. Physics of Ferromagnetism (Oxford Univ. Press, 1997).

  • Silevitch, D. M., Aeppli, G. & Rosenbaum, T. F. Switchable hardening of a ferromagnet at fixed temperature. Proc. Natl Acad. Sci. USA 107, 2797–2800 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brooke, J., Rosenbaum, T. F. & Aeppli, G. Tunable quantum tunnelling of magnetic domain walls. Nature 413, 610–613 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • RELATED ARTICLES

    Most Popular

    Recent Comments